Stereoselective construction of optically active bicyclo[3.3.0]octenone derivatives based on the Pauson-Khand reaction

Chisato Mukai,* Jin Sung Kim, Masahiko Uchiyama, Shinya Sakamoto and Miyoji Hanaoka*

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan

A new procedure for synthesis of optically active bicyclo[3.3.0]octenone derivatives possessing two distinguishable hydroxy groups was developed based on the intramolecular Pauson-Khand reaction of optically active enynes, which were easily prepared from dimethyl L-tartrate. (4S,5S)-4,5-Bis (tert-butyldimethylsiloxy)-7-(trimethylsilyl)hept-1-en-6-yne, for example, afforded ($5 S, 7 S, 8 S$)-7,8-bis (tert-butyldimethylsiloxy)-2-(trimethylsilyl)bicyclo[3.3.0]oct-1-en-3-one exclusively, whereas (3S,4S)-3,4-dihydroxy-7-(trimethylsilyl)hept-1-en-6-yne produced (5R,6S,7S)-6,7-dihydroxy-2-(trimethylsilyl)-bicyclo[3.3.0]oct-1-en-3-one in a highly stereoselective manner.

Introduction

Triquinane sesquiterpenes can be mainly divided into two groups, the linear and the angular, on the basis of the fusion pattern of three five-membered rings. ${ }^{1}$ Coriolin is a representative compound of the former group, and the basic carbon framework of pentalenic acid exhibits the structure of typical angular sesquiterpenes. An optically active bicyclo[3.3.0]octane nucleus can be regarded as the common structural feature of these two types of triquinane sesquiterpenes. Therefore, much effort ${ }^{2}$ has so far been devoted to development of efficient and stereoselective synthesis of the bicyclo[3.3.0]octane framework with suitable functionalities.

Coriolin

Pentalenic Acid

The Pauson-Khand reaction, ${ }^{3}$ a formal $[2+2+1]$ cyclisation of three components (alkyne moiety, olefin portion and carbon monoxide), is well known to be one of the most powerful methods for the construction of cyclopentenone derivatives. During the course of our programme directed towards the development of stereoselective carbon-carbon bond-formation reactions mediated by alkyne-dicobalthexacarbonyl complexes, ${ }^{4}$ we envisaged that intramolecular Pauson-Khand reaction of optically active enyne derivatives such as $\mathbf{1}$ possessing an ether functionality at the propynyl or allylic position would stereoselectively afford the corresponding optically active bicyclo[3.3.0]octenone derivatives 2 (Scheme 1). By taking

1
$\xrightarrow{[2+2+1]}$

Scheme 1
compounds 2 as the key intermediate, both types of triquinane sesquiterpenes would be synthesised in an optically active

2
form. We describe here a highly diastereoselective construction of optically active bicyclo[3.3.0]octenone derivatives via intramolecular Pauson-Khand reaction.

Results and discussion

Intramolecular Pauson-Khand reaction of (4S,5S)-4,5-bis-(oxygenated)-hept-1-en-6-yne derivatives ${ }^{5}$
At the inception of this programme, dimethyl L-tartrate was taken as a starting material for the preparation of starting optically active enyne derivatives (Scheme 2). Treatment of

6

Scheme 2 Reagents: $a, \mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N} ; b, \mathrm{LiC} \equiv \mathrm{CTMS}, \mathrm{THF} ; ~ c$, TBAF; d, H_{2}, Lindlar cat.; $e, \mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{CuI} ; f$, conc. $\mathrm{HCl}, \mathrm{MeOH}$; g, TBDMSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP; $h, \mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, PPTS
alcohol 3, derived from dimethyl L-tartrate according to Kibayashi's procedure, ${ }^{6}$ with triflic anhydride gave the corresponding triflate, ${ }^{7}$ which was subsequently exposed to lithium (trimethylsilyl)acetylide ${ }^{8}$ at $-20^{\circ} \mathrm{C}$ to provide, after desilylation with TBAF, ynol 4 in 47% yield. Half-reduction of the triple

Table 1 Pauson-Khand reaction of compounds 10

a; $R^{1}=R^{2}=H \mathbf{b} ; R^{1}=H, R^{2}=P h \mathbf{c} ; R^{1}=H, R^{2}=B u \mathbf{d} ; R^{1}=H, R^{2}=T M S$
e; $R^{1}=T B D M S, R^{2}=H \mathbf{f} ; R^{1}=T B D M S, R^{2}=P h \mathbf{g} ; R^{1}=T B D M S, R^{2}=B u$
$\mathbf{h} ; R^{1}=$ TBDMS, $R^{2}=T M S \mathbf{i} ; R^{1}=A c, R^{2}=H \mathbf{j} ; R^{1}=A c, R^{2}=P h$
$\mathbf{k} ; R^{1}=A c, R^{2}=B u I ; R^{1}=A c, R^{2}=T M S$

Entry	Substrate	R^{1}	R^{2}	Condition	Product (ratio) ${ }^{a}$ 11:12	Yield $(\%)^{b}$
1	10b	H	Ph	A	81:19	57
2	10b	H	Ph	B	92:8	84
3	10c	H	Bu	A	84:16	68
4	10c	H	Bu	B	83:17	70
5	10d	H	TMS	A	100:0	62
6	10d	H	TMS	B	-	0^{d}
7	10e	TBDMS	H	A	50:50 ${ }^{\text {c }}$	92
8	10e	TBDMS	H	B	45:55 ${ }^{\text {c }}$	69
9	10 f	TBDMS	Ph	A	83:17 ${ }^{\text {c }}$	89
10	10 f	TBDMS	Ph	B	92:8 ${ }^{\text {c }}$	85
11	10 g	TBDMS	Bu	A	90:10 ${ }^{\text {c }}$	80
12	10 g	TBDMS	Bu	B	96:4 ${ }^{\text {c }}$	84
13	10h	TBDMS	TMS	A	100:0 ${ }^{\text {c }}$	93
14	10h	TBDMS	TMS	B	100: 0^{c}	6^{e}
15	10i	Ac	H	A	76:24	60
16	10i	Ac	H	B	65:35	86
17	10j	Ac	Ph	A	87:13	96
18	10j	Ac	Ph	B	88:12	98
19	10k	Ac	Bu	A	88:12	98
20	10k	Ac	Bu	B	91:9	96
21	101	Ac	TMS	A	100:0	86
22	101	Ac	TMS	B	100:0	30^{f}

Condition A: (i) $\mathrm{Co}_{2} \mathrm{CO}_{8}$, (ii) $\mathrm{CH}_{3} \mathrm{CN}, 70-75^{\circ} \mathrm{C}$. Condition B: (i) $\mathrm{Co}_{2} \mathrm{CO}_{8}$, (ii) THF, TMANO, rt.
${ }^{a}$ Ratio between products $\mathbf{1 1}$ and $\mathbf{1 2}$ was determined on the basis of ${ }^{1} \mathrm{H}$ NMR spectral analysis. ${ }^{b}$ Total yield of compounds $\mathbf{1 1}$ and $\mathbf{1 2}$. ${ }^{c}$ Compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ could be isolated in pure form. Ratio indicated refers to isolated amounts of each isomer. ${ }^{d}$ The starting material $\mathbf{1 0 d}$ was recovered (35%).
${ }^{e}$ The starting material $\mathbf{1 0 h}$ was recovered $(34 \%) .{ }^{f}$ The starting material $\mathbf{1 0 1}$ was recovered (51%).
bond of compound 4 was undertaken in the presence of Lindlar catalyst to give enol $\mathbf{5}$ in 88% yield. An alternative procedure was also developed starting from commercially available L-ascorbic acid. According to Abushanab's method, ${ }^{9}$ ethyl ester 6 derived from l-ascorbic acid was reduced with LAH to give the diol, which was subsequently converted into the known epoxide 7^{9} under Mitsunobu conditions. Ring opening of the epoxy functionality in epoxide 7 was realised by Grignard reaction with vinylmagnesium bromide in the presence of copper(I) iodide to afford, after acid treatment, enetriol $\mathbf{8}$ in 80% overall yield. Protection of the primary alcohol of triol 8 with TBDMSCl was followed by successive acetonisation and desilylation to furnish compound $\mathbf{5}$ in 88% yield.

Introduction of an alkyne moiety was performed according to Corey's procedure ${ }^{10}$ (Scheme 3). Primary alcohol 5 was oxidised under Swern conditions to give the aldehyde, which was treated with triphenylphosphine and carbon tetrabromide to leave the dibromoolefin 9 in 79% yield. Treatment of dibromide 9 with n-butyllithium effected conversion of the dibromoolefin moiety into a triple bond to provide, after deketalisation, the alkyne derivative 10a in 75% yield. The other eleven enyne derivatives 10b-I for intramolecular PausonKhand cyclisation were prepared from compound 10a as a common synthetic intermediate by conventional means (see Experimental section).

The Pauson-Khand reaction was investigated under two different conditions. Treatment of a compound $\mathbf{1 0}$ with dicobaltoctacarbonyl $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ in methylene dichloride at room

Scheme 3 Reagents: $a,(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N} ; b, \mathrm{PPh}_{3}, \mathrm{CBr}_{4} ; c, \mathrm{BuLi}$, $0^{\circ} \mathrm{C}$; d, conc. $\mathrm{HCl}, \mathrm{MeOH}$
temperature (rt) gave the corresponding cobalt-complexed derivative. This complex was then heated in acetonitrile at 70$75^{\circ} \mathrm{C}$ (condition A) ${ }^{11}$ or exposed to trimethylamine N -oxide (TMANO) at rt (condition B). ${ }^{12}$ The results obtained are summarised in Table 1. In the case of compound 10a, cobaltcomplexed 10a provided two new products under both A and B conditions in a ratio of $\sim 1: 1$ (monitored by TLC), but these cyclised products could not be isolated, presumably due to their instability. On exposure to thermal conditions (condition A), however, phenyl derivative 10b afforded cyclised products 11b and 12b in a stereoselective manner (11b:12b $=81: 19$) in
57% yield (entry 1). Highly stereoselective formation of product 11b over isomer 12b ($92: 8$) was observed under condition B (entry 2). Similar selectivity and chemical yield were obtained when compound 10c was treated under conditions A and B (entries 3,4). In addition, exclusive formation of compound 11d in 62% yield could be attained in the case of substrate 10d under thermal conditions (entry 5). Treatment of cobaltcomplexed compound 10d with TMANO led to decomplexation to leave the starting 10d in 35% yield (entry 6). In a series of TBDMS derivatives 10e-h (entries 7-14), compounds $\mathbf{1 1}$ were formed predominantly except for the case of compound $\mathbf{1 0 e}\left(\mathrm{R}^{2}=\mathrm{H}\right.$; entries 7,8) where products 11e and 12e were obtained nonselectively. Similar behaviour was recorded when acetoxy derivatives $\mathbf{1 0 i} \mathbf{- l}$ were submitted to intramolecular Pauson-Khand conditions (entries 15-22), although moderately preferential formation of isomer 11i over isomer $\mathbf{1 2 i}$ was observed in the case of substrate $\mathbf{1 0 i}\left(R^{2}=H\right.$, entries 15,16).

Structures of cyclised products $\mathbf{1 1}$ and $\mathbf{1 2}$ were determined by comparison of ${ }^{1} \mathrm{H}$ NMR spectra with the known racemic compounds ${ }^{13} 13$ and 14, whose structures were unambiguously established by chemical transformation as well as spectral evidence. The C-8 protons of cis-bicycles 13a and 13b resonate at $\delta 4.16$ and 4.03 , respectively, whereas those of their transisomers $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ appear at rather lower field ($\delta 4.72$ and 4.47, respectively) in their ${ }^{1} \mathrm{H}$ NMR spectra. These diagnostic differences in chemical shift could be successfully applied to stereochemical assignment of our products 11 and 12. ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 1 f}$ and $\mathbf{1 1 g}$, for example, show C-8 protons at $\delta 4.59$ and 4.45 , while C-8 protons of the corresponding isomers $\mathbf{1 2 f}$ and $\mathbf{1 2 g}$ appear at $\delta 4.88$ and 4.75 in their ${ }^{1} \mathrm{H}$ NMR spectra.

Several significant features deserve comment. Enyne derivatives having a substituent at the acetylenic terminus constantly produced the corresponding isomer 11 in a diastereoselective fashion. Although moderate selectivity was observed as aforementioned in the case of substrate $\mathbf{1 0 i}\left(\mathrm{R}^{1}=\mathrm{Ac}\right.$, $R^{2}=H$), a substituent at the acetylenic terminus seems to be mandatory for high stereoselectivity in this Pauson-Khand reaction. In particular, a considerably bulky terminal substituent like the TMS group completely governs the stereochemical outcome under thermal conditions (condition A in Table 1), resulting in exclusive formation of products 11d,h,l. This observation is in good accord with the results obtained by Magnus ${ }^{13,14}$ during a series of studies on the intramolecular Pauson-Khand reaction. Interestingly, TMS derivatives 10d,h,l afforded mainly starting materials along with small amounts of cyclised products when exposed to TMANO (condition B; entries $6,14,22$). It should be mentioned that although compounds 10a,e, \mathbf{i} without any substituents at the triple bond terminus gave the cyclised products nonselectively this is actually not a serious drawback to this cyclisation, since the terminal TMS group of these enynes can serve as a surrogate for the acetylenic hydrogen. Bulky substituents on the two hydroxy groups of substrates $\mathbf{1 0}$ were found not always to affect significantly the degree of stereoselectivity in the formation of products 11. It is, however, obvious that the most bulky TBDMS group on these two hydroxy groups constantly provided high stereoselectivity except for the case of substrate 10e.

Highly preferential formation of compounds $\mathbf{1 1}$ over isomers 12 can be tentatively interpreted on the basis of a mechanistic hypothesis for the intramolecular Pauson-Khand reaction as proposed by Magnus ${ }^{13}$ (Scheme 4). Cobalt complexation of

10

Cobal-complexed 10

11

12
Scheme 4
enyne 10 with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ gave the corresponding dicobalt-hexacarbonyl-complexed 10, which would in turn result in formation of two possible cobalt-metallocycles A and B via consecutive ligand exchange between one of six carbon monoxides on the cobalt atoms and the internal olefin moiety, followed by alkene insertion into a carbon-cobalt bond. The intermediate \mathbf{A} can undergo carbon monoxide insertion to give the second intermediate \mathbf{A}^{\prime} which would collapse to compound 11 by the following two steps, (i) migration of a carbon-cobalt bond to an adjacent carbonyl moiety and (ii) reductive elimination of the dicobalt moiety, whereas the intermediate \mathbf{B} must produce the corresponding second intermediate \mathbf{B}^{\prime} which would undertake a similar transformation to afford product $\mathbf{1 2}$. Therefore, the first step (formation of intermediates \mathbf{A} and \mathbf{B}) would be considered to be the process determining the reaction's stereochemical outcome. In the cobalt-metallocycle \mathbf{B}, the C-8 hydroxy functionality ($\mathrm{R}^{1} \mathrm{O}$ group) at the propynyl position should have a nonbonding interaction with the substituent at
the acetylenic terminus (R^{2} group) due to a kind of 1,3-pseudodiaxial relationship in the sterically congested concave face of the transient cobaltabicyclo[3.3.0]octanone skeleton; thereby a seriously unfavourable interaction might occur. This would not be the case in the intermediate A where the $\mathrm{R}^{1} \mathrm{O}$ group and R^{2} substituent have a trans relationship. As a result, the cyclisation pathway through \mathbf{A} would be preferred over that through B, giving rise to predominant formation of products 11. These simple analyses, therefore, help us to explain the diastereoselective bias observed in the above intramolecular Pauson-Khand reaction where exclusive or stereoselective construction of products $\mathbf{1 1}$ over isomers $\mathbf{1 2}$ could be realised. The fact that the bulkier the substituents on the hydroxy group and/or triple bond terminus the higher the diastereoselectivity may reflect an increase of instability of \mathbf{B} due to nonbonding interaction between the $\mathrm{R}^{1} \mathrm{O}$ group and the R^{2} moiety. ${ }^{13}$

We could develop the procedure for stereoselective construction of optically active bicyclo[3.3.0]octenone derivatives $\mathbf{1 1}$ from enynes $\mathbf{1 0}$, which have two distinguishable hydroxy groups at allylic and homoallylic positions. Compound 11h, for instance, gave the allylic alcohol derivative 15 in 75% yield on treatment with TBAF. Introduction of an acetyl group on the allylic hydroxy group of compound $\mathbf{1 5}$ was easily realised under standard conditions to provide acetate $\mathbf{1 6}$ in 79% yield as shown in Scheme 5. Thus, compound 11h would be expected to be an

Scheme 5 Reagents: a, TBAF, THF; $b, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
important intermediate for further manipulation aiming at synthesis of optically active triquinane sesquiterpene natural products. The next phase of our programme was to investigate the Pauson-Khand reaction of the regioisomers of compound 10, which would be prepared from the same starting material, dimethyl L-tartrate.

Intramolecular Pauson-Khand reaction of ($\mathbf{3 S , 4 S}$)-3,4-bis(oxygenated)-hept-1-en-6-yne derivatives

The acetonide derivative $\mathbf{3},{ }^{6}$ derived from dimethyl L-tartrate, was oxidised under Swern conditions to give the aldehyde, which was then exposed to Wittig reaction with methylidenetriphenylphosphorane to afford, after deprotection with TBAF, the alkene derivative $\mathbf{1 7}$ in 80% overall yield. Activation of the hydroxy group of compound 17 as a triflate was followed by displacement with lithium (trimethylsilyl)acetylide ${ }^{8}$ to furnish compound 18 in 45% yield. The corresponding phenyl and butyl derivatives $\mathbf{1 9}$ and $\mathbf{2 0}$ were also prepared from alcohol 17 by changing the nucleophile from lithium (trimethylsilyl)acetylide to lithium phenylacetylide and lithium hexylide, respectively. Deketalisation of compound $\mathbf{1 8}$ under conventional conditions gave the dihydroxy derivative 21d in 97% yield, treatment of which with potassium carbonate in methanol effected removal of the terminal TMS group to afford terminal alkyne 21a in 83% yield. Compounds $\mathbf{1 9}$ and $\mathbf{2 0}$ could be easily converted into the corresponding dihydroxy derivatives 21b,c. The TBDMS-protected and acetylated congeners 21e-I as substrates for intramolecular Pauson-Khand reaction were derived from diols 21a-d according to procedures described for the preparation of their regioisomeric analogues 10e-l (Scheme 6; see Experimental section).

Prior to our present investigation, Magnus ${ }^{13 a}$ disclosed complete control of stereoselectivity in a synthesis of 6-substituted-2-TMS-bicyclo[3.3.0]octenone skeletons by intra-

Scheme 6 Reagents: $a,(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N} ; b, \mathrm{Ph}_{3} \mathrm{PCH}_{2}$, THF; c, TBAF, THF; $d, \mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; e, \mathrm{LiC} \equiv \mathrm{CTMS}, \mathrm{DMPU}, \mathrm{THF}$; $f, \mathrm{TsOH}, \mathrm{MeOH} ; g, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$
molecular Pauson-Khand reaction where racemic enyne derivatives 24 possessing bulky substituents at the allylic position were found to produce exclusively the corresponding bicyclic compounds $\mathbf{2 5}$ in good yields (68 and 78\% yield). This high stereochemical bias could be tentatively and understandably explained in terms of the intermediacy of cobaltmetallocycles \mathbf{C} and $\mathbf{D} .{ }^{13}$ The intermediate \mathbf{C} leading to product 25 has a cis arrangement between the oxygen functionality (OR) and ring-junction hydrogen, and a trans alignment with the TMS group as well. In the intermediate \mathbf{D}, the OR appendage is placed in the concave face and therefore suffers from not only an unfavourable cis-1,2-relationship with the carboncarbon framework of the five-membered metallocyclic ring (interaction a), but also a 1,4-pseudo-nonbonding interaction with the TMS group (interaction b) as depicted in Scheme 7.

Table 2 Pauson-Khand reaction of compounds 21

a; $R^{1}=R^{2}=H \mathbf{b} ; R^{1}=H, R^{2}=\operatorname{Ph} \mathbf{c} ; R^{1}=H, R^{2}=B u d ; R^{1}=H, R^{2}=T M S$
e; $R^{1}=$ TBDMS, $R^{2}=H \mathbf{f} ; \mathrm{R}^{1}=$ TBDMS, $R^{2}=P h \mathbf{g} ; R^{1}=$ TBDMS, $R^{2}=B u$
h; $R^{1}=$ TBDMS, $R^{2}=T M S ~ i ; R^{1}=A c, R^{2}=H j ; R^{1}=A c, R^{2}=P h$
k; $R^{1}=A c, R^{2}=B u I ; R^{1}=A c, R^{2}=T M S$

Entry	Substrate	R^{1}	R^{2}	Condition	Product (ratio) ${ }^{a}$ 22:23	$\begin{aligned} & \text { Yield } \\ & (\%)^{b} \end{aligned}$
1	21b	H	Ph	A	60:40 ${ }^{\text {c }}$	61
2	21b	H	Ph	B	82:18 ${ }^{\text {c }}$	75
3	21c	H	Bu	A	67:33 ${ }^{\text {c }}$	67
4	21c	H	Bu	B	94:6 ${ }^{\text {c }}$	70
5	21d	H	TMS	A	93:7 ${ }^{\text {c }}$	74
6	21d	H	TMS	B	-	0^{d}
7	21e	TBDMS	H	A	49:51 ${ }^{\text {e }}$	84
8	21e	TBDMS	H	B	65:35 ${ }^{\text {e }}$	81
9	21f	TBDMS	Ph	A	43:57 ${ }^{\text {e }}$	91
10	21 f	TBDMS	Ph	B	53:47 ${ }^{\text {e }}$	82
11	21g	TBDMS	Bu	A	38:62	88
12	21g	TBDMS	Bu	B	70:30	63
13	21h	TBDMS	TMS	A	70:30	80
14	21h	TBDMS	TMS	B	83:17	62^{f}
15	21j	Ac	Ph	A	56:44	60
16	21j	Ac	Ph	B	59:41	73
17	21k	Ac	Bu	A	52:48	85
18	21k	Ac	Bu	B	57:43	83
19	211	Ac	TMS	A	77:23	79
20	211	Ac	TMS	B	67:33	57

Condition A: (i) $\mathrm{Co}_{2} \mathrm{CO}_{8}$, (ii) $\mathrm{CH}_{3} \mathrm{CN}, 70-75^{\circ} \mathrm{C}$. Condition B: (i) $\mathrm{Co}_{2} \mathrm{CO}_{8}$, (ii) THF, TMANO, rt.
${ }^{a}$ Ratio between products 22 and 23 was determined on the basis of ${ }^{1} \mathrm{H}$ NMR spectral analysis. ${ }^{b}$ Total yield of compounds $\mathbf{2 2}$ and $\mathbf{2 3}$. ${ }^{c}$ Isolated as the corresponding diacetate derivatives $\mathbf{2 2 j} \mathbf{- l}$ and $\mathbf{2 3 j}-\mathbf{I}$. ${ }^{d}$ The starting material $\mathbf{2 1 d}$ was recovered ($\mathbf{4 9} \%$). ${ }^{e}$ Compounds $\mathbf{2 2}$ and $\mathbf{2 3}$ could be isolated in pure form. Ratio indicated refers to isolated amounts of each isomer. ${ }^{f}$ In addition, the starting material $\mathbf{2 1 h}$ was recovered (29%).

Thus exclusive formation of compounds $\mathbf{2 5}$ could be rationalised from the above considerations. ${ }^{13}$ Mulzer ${ }^{15}$ also reported an exclusive formation of optically active bicyclo[3.3.0]derivative 27 in 43% yield from the optically active enyne 26 having a bulky (benzyloxy)ethyl functionality at the allylic position (Scheme 7). Therefore, we anticipated that Pauson-Khand reaction of the O-TBDMS-protected enynes 21f-h would proceed in a highly stereoselective way to afford products 22f-h in line with the literature precedents. ${ }^{13-15}$
Pauson-Khand reaction of ($3 S, 4 S$)-3,4-bis(oxygenated)-hept-1-en-6-yne derivatives $\mathbf{2 1}$ was carried out under two different conditions ${ }^{11,12}$ as described for the cyclisation of analogues 10. The results obtained are presented in Table 2. Contrary to our expectation, however, compounds 21f-h didn't provide the corresponding bicycles $\mathbf{2 2 f}-\mathbf{h}$ in a stereoselective fashion (entries 9-14). In addition, acetyl derivatives $\mathbf{2 1 j} \mathbf{I}$ afforded cyclised products nonselectively (entries 15-20). It should be emphasised here that highly preferential construction of compounds $\mathbf{2 2}$ over $\mathbf{2 3}$ could be observed in a series of dihydroxy compounds 21b-d (entries 1-6). In particular, when compound 21c with a butyl group at the acetylenic terminus was exposed to condition B, compound 22c was obtained in a highly stereoselective manner (entry 4, 22c:23c = 94:6). Similar high selectivity (93:7) was recognised in the case of TMS derivative 21d under condition A (entry 5). Phenyl derivative 21b also showed high selectivity in production of compound 22b (entry 2). Compounds 21a and 21i $\left(\mathrm{R}^{2}=\mathrm{H}\right)$ could be converted into the corresponding cobalt-complexed ones, but attempted further conversion into the cyclised products was fruitless presumably due to decomposition of cyclised products
during column chromatography. The structures of the cyclised products were determined by spectral evidence and comparison with known compounds ${ }^{15}$ whose stereochemistry was already unambiguously established.

Enyne derivatives 21b-d with the smaller substituent (a free hydroxy group) at the allylic position revealed the higher diastereoselectivity. This phenomenon is in sharp contrast to the prediction based on Magnus' working hypothesis. ${ }^{13}$ Enyne $24(\mathrm{R}=\mathrm{H}$; Scheme 7) had been shown to furnish cyclised products $\mathbf{2 5}$ and its C-5 epimer in the ratio 72:28 when submitted to Pauson-Khand conditions. The diastereoselectivity was obviously decreased by changing the allylic substituent from sterically bulkier ones [MOM, $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMOM}$] to a less bulky one (H). An additional two examples resulting in unsatisfactory selectivity were also disclosed by Mulzer ${ }^{15}$ (Scheme 7). Namely, optically active enyne $\mathbf{2 8}$ produced the cyclised product 29 in 31% yield under Pauson-Khand conditions in moderate selectivity (29: its C-5 epimer $=75: 25$). Furthermore, optically active enyne 30, having a very similar relative structure to that of compounds 21, gave optically active bicycle 31 and its $\mathrm{C}-5$ epimer nonselectively in rather lower yield again. Although these two compounds have the relatively bulky benzyloxy functionality at the allylic position, acceptable stereoselectivity could not be achieved. It is apparent that high stereoselectivity observed in the cases of substrates 21c, 21d (and 21b) (Table 2, entries $4,5,2$) can never be rationalised by Magnus' working hypothesis ${ }^{13}$ alone. The free hydroxy group at the allylic position would play an important role in governing the stereochemical outcome, although details of the mechanism still remain unclear.

Thus a highly stereoselective procedure for syntheses of ($5 S, 7 S, 8 S$)-2-substituted-7,8-dioxygenated-bicyclo[3.3.0]oct-1-en-3-one and ($5 R, 6 S, 7 S$)-2-substituted-6,7-dihydroxybicyclo-[3.3.0]oct-1-en-3-one derivatives from ($4 S, 5 S$)-4,5-dioxy-genated-hept-1-en-6-yne and (3S,4S)-3,4-dihydroxy-6-sub-stituted-hept-1-en-6-yne derivatives, respectively, on the basis of the Pauson-Khand reaction was developed. This method would provide useful starting materials with two distinguishable hydroxy groups as well as an enone moiety for synthesis of optically active triquinane sesquiterpenes. Further studies on the mechanism and application of this methodology to stereoselective construction of bicyclo[4.3.0]nonenone and bicyclo[5.3.0]decenone skeletons are now in progress.

Experimental

Mps were determined on a Yanagimoto micro melting-point apparatus and are uncorrected. IR spectra were measured with a JASCO A-102 spectrometer for solutions in CHCl_{3}, mass spectra with Hitachi M-80 and JEOL JMS-SX 102 A mass spectrometers, optical rotations with a Horiba SEPA-300 high sensitivity polarimeter, ${ }^{1} \mathrm{H}$ NMR spectra with JEOL EX-270 and JEOL JNM-GX 500 spectrometers for solutions in CDCl_{3} with either tetramethylsilane as an internal standard for compounds that have no silyl group or $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}} 7.26\right)$ for compounds possessing the silyl group, and ${ }^{13} \mathrm{C}$ NMR spectra with JEOL EX-270 and JEOL JNM-GX 500 spectrometers for samples in CDCl_{3} with $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}} 77.0\right)$ as an internal reference All J-values are in Hz and $[a]_{\mathrm{D}}$-values in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was freshly distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, and THF from sodium/ benzophenone prior to use. All reactions were carried out under nitrogen. Silica gel (Silica gel 60, 230-400 mesh, Merck) was used for chromatography. Organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
(2S,3S)-2,3-(Isopropylidenedioxy)hex-5-yn-1-ol (-)-4
To a solution of the silyl ether $\mathbf{3}(305 \mathrm{mg}, 1.10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($335 \mathrm{mg}, 3.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(13 \mathrm{~cm}^{3}\right)$ was added a solution of trifluoromethanesulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) ($466 \mathrm{mg}, 1.65$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7.0 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at the same temperature, washed successively with saturated aq. NaHCO_{3}, water and brine, dried and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (10:1) to give the triflate. BuLi in hexane ($1.65 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.67 \mathrm{~cm}^{3}, 1.10 \mathrm{mmol}$) was added to a solution of (trimethylsilyl)acetylene ($130 \mathrm{mg}, 1.32$ $\mathrm{mmol})$ in THF $\left(6.0 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The resulting solution of acetylide in THF was cooled to $-20^{\circ} \mathrm{C}$, to which a solution of the crude triflate in a combined solution of THF and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidone (DMPU) (12 and $3.0 \mathrm{~cm}^{3}$, respectively) was added. The reaction mixture was stirred for 1 h , quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The extract was washed successively with water and brine, dried and concentrated to dryness. The residue was dissolved in THF $\left(5.0 \mathrm{~cm}^{3}\right)$ and a solution of TBAF in THF $\left(1.00 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2.40 \mathrm{~cm}^{3}, 2.40\right.$ mmol) was added. The reaction mixture was stirred at rt for 1 h and diluted with ethyl acetate and the solution was washed successively with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexaneAcOEt (5:1) to give title compound $(-)-4(88.0 \mathrm{mg}, 47 \%)$ as an oil (Found: C, 63.0; H, 8.2. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, 63.5; H, 8.3\%); $[a]_{\mathrm{D}}^{18}-3.0\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3610(\mathrm{OH}), 3480(\mathrm{OH})$, $3320(\mathrm{C} \equiv \mathrm{C}-\mathrm{H})$ and $2100(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}} 4.08-3.86(3 \mathrm{H}, \mathrm{m}, 1-, 2-$ and $3-\mathrm{H}), 3.71(1 \mathrm{H}$, ddd, $J 11.5,7.3$ and $4.3,1-\mathrm{H}), 2.62(1 \mathrm{H}$, ddd, $J 17.2,5.0$ and $2.6,4-\mathrm{H}), 2.51(1 \mathrm{H}$, ddd, $J 17.0,6.6$ and 2.6 , $4-\mathrm{H}), 2.07$ ($1 \mathrm{H}, \mathrm{t}, J 2.6,6-\mathrm{H}$), 2.02 ($1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $5.0, \mathrm{OH}$), $1.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 109.2,81.0,79.3$, 74.4, 70.9, 62.19, 27.1 and $22.8 ; m / z 169\left(\mathrm{M}^{+}-1,2.1 \%\right), 155$ (91), 59 (91) and 43 (100).
(2S,3S)-2,3-(Isopropylidenedioxy)hex-5-en-1-ol (-)-5
A suspension of ynol $4(83 \mathrm{mg}, 0.49 \mathrm{mmol}$) and pyridine (293 $\mathrm{mg}, 3.70 \mathrm{mmol})$ in hexane $\left(20 \mathrm{~cm}^{3}\right)$ was hydrogenated in the presence of Lindlar catalyst (23.5 mg) under hydrogen at rt for 2 h . The catalyst was filtered off and the filtrate was concentrated to dryness. Chromatography of the residual oil with hexane-AcOEt (10:1) afforded title compound (-)-5 $\mathbf{(7 4 . 0 ~ \mathrm { mg } \text { , }}$ 88%) as an oil (Found: C, 62.5; H, 9.5. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, $62.8 ; \mathrm{H}, 9.4 \%)$; $[a]_{\mathrm{D}}^{26}-23.1$ (c $\left.0.49, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3610$ $(\mathrm{OH}), 3460(\mathrm{OH})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.84(1 \mathrm{H}, \mathrm{ddt}, J 17.2,10.2$ and $6.9,5-\mathrm{H}), 5.20-5.08\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 4.14-3.54(4 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}_{2}, 2-$ and $\left.3-\mathrm{H}\right), 2.42-2.34\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{OH})$, $1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 133.5,117.8,108.7$, 81.0, 75.8, 61.9, 37.3, 27.3 and 27.0; m/z $157\left(\mathrm{M}^{+}-15,87 \%\right)$, 141 (20), 131 (62), 83 (41), 79 (28), 59 (100) and 43 (29).

(2S,3S)-Hex-5-ene-1,2,3-triol (-)-8

To a suspension of copper(I) iodide ($351 \mathrm{mg}, 1.85 \mathrm{mmol}$) in THF ($30 \mathrm{~cm}^{3}$) was added a solution of vinylmagnesium bromide in THF $\left(0.87 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 14 \mathrm{~cm}^{3}, 1.38 \mathrm{mmol}\right)$ at $-78^{\circ} \mathrm{C}$. After stirring of this mixture for 5 min , a solution of epoxide 7 $(877 \mathrm{mg}, 6.08 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture, which was further stirred for an additional hour before being quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ four times. The extracts were washed successively with water and brine, dried and concentrated to dryness. The residue was dissolved in $\mathrm{MeOH}\left(60 \mathrm{~cm}^{3}\right)$ to which conc. $\mathrm{HCl}\left(4.0 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was heated under reflux for 3 h . MeOH was evaporated off and the residue was diluted with water, and extracted with AcOEt four times. The extracts were washed with water, dried and concentrated to dryness. Chromatography of the residual oil with AcOEt gave title compound $(-)-\mathbf{8}(640 \mathrm{mg}, 80 \%)$ as an oil (Found: C, 54.0; H, 9.0. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 54.5 ; \mathrm{H}, 9.2 \%$); $[a]_{\mathrm{D}}^{25}-4.8\left(c 0.21, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3390(\mathrm{OH})$ and $1645(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 5.85(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.22-5.12\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.83-3.45(4 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}_{2}$, 2 - and 3-H), $2.69(1 \mathrm{H}$, br s, OH), 2.45-2.15 (4 H , $\mathrm{m}, 4-\mathrm{H}_{2}$ and OH); $\delta_{\mathrm{C}} 134.3,118.0,73.4,71.6,64.3$ and 38.0 ; $m / z 132\left(\mathrm{M}^{+}, 0.6 \%\right), 91(46), 78(26), 63(30), 55(22)$ and 43 (100).

Conversion of triol (-)-8 into alcohol (-)-5

TBDMSCl ($991 \mathrm{mg}, 6.57 \mathrm{mmol}$) was added to a solution of triol $8(825 \mathrm{mg}, 6.24 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(944 \mathrm{mg}, 9.33 \mathrm{mmol})$ and DMAP ($146 \mathrm{mg}, 1.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at rt. After being stirred for 2 h , the reaction mixture was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with water and brine, dried and concentrated to leave the crude mono-TBDMS-protected product. This residue was dissolved in acetone $\left(15 \mathrm{~cm}^{3}\right)$ to which 2,2-dimethoxypropane ($8.47 \mathrm{~g}, 81.3 \mathrm{mmol}$) and PPTS $(270 \mathrm{mg}, 1.07 \mathrm{mmol})$ were successively added. The reaction mixture was stirred at rt for 3 h and acetone was evaporated off. A solution of TBAF in THF $\left(1.00 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 7.0 \mathrm{~cm}^{3}, 7.00\right.$ $\mathrm{mmol})$ was added to a solution of the residue in THF $\left(15 \mathrm{~cm}^{3}\right)$. After being stirred for 30 min at rt , the reaction mixture was quenched by addition of water and extracted with AcOEt. The extract was washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexane- $\operatorname{AcOEt}(4: 1)$ afforded alcohol (-)-5 ($949 \mathrm{mg}, 88 \%$).

(3S,4S)-1,1-Dibromo-3,4-(isopropylidenedioxy)hepta-1,6-diene

 (-)-9A solution of DMSO $(1.28 \mathrm{~g}, 16.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6.0 \mathrm{~cm}^{3}\right)$ was gradually added to a solution of oxalyl dichloride $(1.04 \mathrm{~g}$, $8.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6.0 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After stirring of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for 15 min , a solution of the alcohol $5(611 \mathrm{mg}$, $3.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6.0 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(2.16 \mathrm{~g}, 21.3 \mathrm{mmol})$ was added to the reaction mixture, which was then gradually
warmed to rt and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed successively with water and brine, dried and concentrated to dryness.

To a solution of $\mathrm{PPh}_{3}(7.45 \mathrm{~g}, 28.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(12 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{CBr}_{4}(4.71 \mathrm{~g}, 14.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(12 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the solution was stirred for an additional 10 min . A solution of the crude aldehyde derived from alcohol 5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(18 \mathrm{~cm}^{3}\right)$ was then added to a solution of the ylide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 3 h at rt. The reaction mixture was quenched by addition of saturated aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was washed successively with water and brine, dried and concentrated to dryness. The residual solids were washed with hexane several times and the filtrate was concentrated to leave a residue, which was chromatographed with hexane-AcOEt (40:1) to give dibromide $(-)-9(914 \mathrm{mg}, 79 \%)$ as a pale yellow oil (Found: C, 37.0; H, 4.4. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2}$ requires C, $36.8 ; \mathrm{H}, 4.3 \%$), $[a]_{\mathrm{D}}^{24}-3.2$ (c 0.50 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1645(\mathrm{C}=\mathrm{C})$ and $1620(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 6.44(1 \mathrm{H}, \mathrm{d}$, $J 8.3,2-\mathrm{H}), 5.84(1 \mathrm{H}$, ddt, $J 17.2,10.2$ and $6.9,6-\mathrm{H})$, $5.22-5.11$ $\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 4.33(1 \mathrm{H}, \mathrm{t}, J 8.3,3-\mathrm{H}), 3.86(1 \mathrm{H}$, ddd, $J 8.3$, 6.6 and $5.0,4-\mathrm{H}), 2.51-2.32\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 135.5,133.0,118.0,109.6,94.1,80.2$, 79.2, 40.0, 27.1 and 26.7; m/z $313\left(\mathrm{M}^{+}-15,3.3 \%\right), 311\left(\mathrm{M}^{+}-\right.$ $15,6.6), 309\left(\mathrm{M}^{+}-15,3.5\right), 258$ (16), 96 (49) and 43 (100).

(3S,4S)-Hept-6-en-1-yne-3,4-diol (-)-10a

To a solution of dibromide $9(205 \mathrm{mg}, 0.63 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ ($4.0 \mathrm{~cm}^{3}$) was added BuLi in hexane ($1.62 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.78 \mathrm{~cm}^{3}$, 1.26 mmol) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min before being diluted with $\mathrm{MeOH}\left(8.0 \mathrm{~cm}^{3}\right)$, to which conc. $\mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was heated under reflux for 3 h and then MeOH was evaporated off. The residue was taken up with AcOEt, which was washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (5:1) afforded diol (-)-10a ($58 \mathrm{mg}, 75 \%$) as an oil (Found: $\mathrm{C}, 66.9 ; \mathrm{H}, 7.9 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.7 ; \mathrm{H}, 8.0 \%$); $[0]_{\mathrm{D}}^{18}-11.8$ (c $\left.0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3590(\mathrm{OH}), 3400(\mathrm{OH}), 3310$ $(\mathrm{C} \equiv \mathrm{C}-\mathrm{H})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.87(1 \mathrm{H}$, ddt, $J 17.2,9.6$ and 7.6 , $6-\mathrm{H}), 5.23-5.15\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 4.24(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and 2.0 , $3-\mathrm{H}), 3.74(1 \mathrm{H}$, ddd, $J 7.9,5.9$ and $4.3,4-\mathrm{H}), 2.60-2.22(4 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}_{2}$ and OH$)$ and $2.52(1 \mathrm{H}, \mathrm{d}, J 2.0,1-\mathrm{H}) ; \delta_{\mathrm{C}} 133.7,118.6$, 82.0, 74.6, 73.7, 65.3 and $36.9 ; m / z 71\left(\mathrm{M}^{+}-55,6.2 \%\right)$, 56 (17) and 43 (14).

(3S,4S)-1-Phenylhept-6-en-1-yne-3,4-diol (-)-10b

To a solution of terminal alkyne 10a ($25 \mathrm{mg}, 0.20 \mathrm{mmol}$) and iodobenzene ($49 \mathrm{mg}, 0.24 \mathrm{mmol}$) in THF ($2.0 \mathrm{~cm}^{3}$) were successively added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\left(4.2 \mathrm{mg}, 6.0 \times 10^{-3} \mathrm{mmol}\right)$, $\mathrm{CuI}\left(2.3 \mathrm{mg}, 1.2 \times 10^{-2} \mathrm{mmol}\right)$ and diisopropylamine (203 mg , 2.01 mmol) at rt . The reaction mixture was stirred for 2 h and filtered. The filtrate was concentrated to leave a residual oil, which was chromatographed with hexane-AcOEt (5:1) to afford title compound $(-) \mathbf{- 1 0 b}(34 \mathrm{mg}, 84 \%)$ as an oil (Found: $\mathrm{C}, 76.8 ; \mathrm{H}, 7.0 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 77.2 ; \mathrm{H}, 7.0 \%\right) ;[a]_{\mathrm{D}}^{20}-36.4$ (c $0.50, \mathrm{CHCl}_{3}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3590(\mathrm{OH}), 3400(\mathrm{OH})$ and 2210 $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}} 7.45-7.40(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.32-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.90(1 \mathrm{H}$, ddt, $J 16.8,9.6$ and $7.6,6-\mathrm{H}), 5.22-5.11(2 \mathrm{H}, \mathrm{m}$, $\left.7-\mathrm{H}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J 6.6,3-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.32(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 3.01(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.57(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $2.34(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}) ; \delta_{\mathrm{C}} 133.9,131.7,128.6,128.3,122.1,118.2,87.1,86.5,74.1$, 66.1 and $37.1 ; \mathrm{m} / \mathrm{z} 202\left(\mathrm{M}^{+}, 1.3 \%\right), 158$ (18), 132 (48), 115 (25), 104 (24), 77 (33) and 41 (15).

(4S,5S)-4,5-Bis(tert-butyldimethylsiloxy)hept-1-en-6-yne

 (-)-10eTo a solution of diol $\mathbf{1 0 a}(58.5 \mathrm{mg}, 0.47 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(291$ $\mathrm{mg}, 2.87 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.0 \mathrm{~cm}^{3}\right)$ was added TBDMSOTf $\left(0.33 \mathrm{~cm}^{3}, 1.44 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 min at rt , quenched by addition of water, and extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ four times. The extracts were washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexane afforded title compound $(-)-10 e(161 \mathrm{mg}, 98 \%)$ as an oil (Found: C, $64.0 ; \mathrm{H}$, 10.9. $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires C, 64.3; H, 10.8\%); $[a]_{\mathrm{D}}^{20}-8.1$ (c 0.50, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3310(\mathrm{C}=\mathrm{C}-\mathrm{H})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.86(1 \mathrm{H}$, ddt, $J 17.2,9.9$ and $7.3,2-\mathrm{H}), 5.13-5.01\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 4.31$ $(1 \mathrm{H}, \mathrm{dd}, J 5.3$ and $2.3,5-\mathrm{H}), 3.62(1 \mathrm{H}$, ddd, $J 7.6,5.3$ and 4.0 , 4-H), 2.54-2.29 (2 H, m, 3-H2), 2.35 ($1 \mathrm{H}, \mathrm{d}, J 2.3,7-\mathrm{H}), 0.91$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{C}} \mathrm{Bu}\right), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.10(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 135.6,116.9$, 83.1, 74.8, 73.4, 66.7, 36.8, 25.8, 25.8, 18.2, 18.1, $-4.5,-4.7$ and $-4.9 ; \mathrm{m} / \mathrm{z} 354\left(\mathrm{M}^{+}, 29 \%\right), 313$ (13), 297 (89), 189 (21), 147 (99), 115 (21), 91 (30) and 73 (100).

(4S,5S)-4,5-Bis(tert-butyldimethylsiloxy)-7-phenylhept-1-en-6yne (-)-10f

According to the procedure described for preparation of compound 10e from diol 10a, compound $\mathbf{1 0 b}$ ($96 \mathrm{mg}, 0.48 \mathrm{mmol}$) was treated with TBDMSOTf $\left(0.24 \mathrm{~cm}^{3}, 1.05 \mathrm{mmol}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}$ $(218 \mathrm{mg}, 2.15 \mathrm{mmol})$ to give title compound $(-)-\mathbf{1 0 f}(200 \mathrm{mg}$, 98%) as an oil (Found: $\mathrm{M}^{+}, 430.2711 . \mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires M, 430.2723); $[a]_{\mathrm{D}}^{20}-10.2$ ($c 0.50, \mathrm{CHCl}_{3}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 7.43-7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.32-7.27(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.91$ $(1 \mathrm{H}, \mathrm{ddt}, J 17.2,9.9$ and $7.3,2-\mathrm{H}), 5.13-5.03(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, 4.53 ($1 \mathrm{H}, \mathrm{d}, J 5.3,5-\mathrm{H}$), 3.72 (1 H , ddd, $J .3,5.3$ and $4.3,4-\mathrm{H}$), 2.58-2.36 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $0.94\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.91\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $0.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and 0.08 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 135.6,131.5,128.2,128.0,123.3,116.8,89.0$, 85.4, 75.2, 67.3, 37.3, 25.9, 18.3, 18.1, $-4.4,-4.5$ and -4.7 ; $m / z 430\left(\mathrm{M}^{+}, 56 \%\right), 373$ (39), 185 (100), 147 (49), 115 (14) and 73 (62).

(4S,5S)-4,5-Bis(tert-butyldimethylsiloxy)undec-1-en-6-yne (-)-10g

To a solution of terminal alkyne 10e ($385 \mathrm{mg}, 1.09 \mathrm{mmol}$) in THF ($5.0 \mathrm{~cm}^{3}$) was added BuLi in hexane ($1.60 \mathrm{~mol} \mathrm{dm}{ }^{-3}$; $\left.0.81 \mathrm{~cm}^{3}, 1.30 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at the same temperature for 30 min , a solution of butyl iodide ($602 \mathrm{mg}, 3.27$ mmol) in a combined solution of THF and DMPU (1.0 and 1.0 cm^{3}, respectively) was added to the reaction mixture, which was then stirred for 9 h at rt , quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexane afforded title compound (-)-10g ($322 \mathrm{mg}, 72 \%$) as an oil (Found: C, 66.9 ; $\mathrm{H}, 11.3 . \mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires $\left.\mathrm{C}, 67.3 ; \mathrm{H}, 11.3 \%\right) ;[\alpha]_{\mathrm{D}}^{24}-5.5$ (c 0.20, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2220(\mathrm{C} \equiv \mathrm{C})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.88$ (1 H , ddt, J 17.2, 10.2 and 7.3, 2-H), 5.10-4.99 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}$), $4.29(1 \mathrm{H}, \mathrm{dt}, J 5.3$ and $2.0,5-\mathrm{H}), 3.60(1 \mathrm{H}$, ddd, $J 7.6,5.3$ and 4.3, 4-H), 2.50-2.28 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $2.20(2 \mathrm{H}, \mathrm{dt}, J 6.6$ and 2.0 , $\left.8-\mathrm{H}_{2}\right), 1.51-1.35\left(4 \mathrm{H}, \mathrm{m}, 9-\mathrm{and} 10-\mathrm{H}_{2}\right), 0.94-0.86(21 \mathrm{H}, \mathrm{m}$, ${ }^{t} \mathrm{Bu} \times 2$ and Me$), 0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.06(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 136.0,116.5,85.8,79.3,75.3$, $67.0,37.1,30.7,25.9,25.9,21.9,18.4,18.3,18.1,13.6,-4.4$, $-4.5,-4.5$ and $-4.7 ; m / z 410\left(\mathrm{M}^{+}, 30 \%\right), 353$ (40), 185 (84), 147 (87), 115 (17) and 73 (84).
(4S,5S)-4,5-Bis(tert-butyldimethylsiloxy)-1-(trimethylsily)hept-1-en-6-yne (-)-10h
According to the procedure described for preparation of compound 10 g and terminal alkyne $\mathbf{1 0 e}$, the same substrate 10e ($385 \mathrm{mg}, 1.09 \mathrm{mmol}$) was successively treated with BuLi in hexane ($1.60 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.81 \mathrm{~cm}^{3}, 1.30 \mathrm{mmol}$) and TMSCl $(237 \mathrm{mg}, 2.18 \mathrm{mmol})$ to give, after chromatography with hexane, title compound $(-)-\mathbf{1 0 h}(451 \mathrm{mg}, 97 \%)$ as an oil (Found: M^{+}, 426.2818. $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{3}$ requires $M, 426.2806$); $[a]_{\mathrm{D}}^{25}-1.0$ (c $\left.0.50, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2160(\mathrm{C}=\mathrm{C})$ and $1640(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.86$ $(1 \mathrm{H}, \mathrm{ddt}, J 17.2,9.9$ and $7.3,2-\mathrm{H}), 5.11-5.00(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, 4.28 ($1 \mathrm{H}, \mathrm{d}, J 5.3,5-\mathrm{H}$), $3.62(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.50-2.28(2 \mathrm{H}, \mathrm{m}$,

3- H_{2}), $0.91\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.15(9 \mathrm{H}, \mathrm{s}, \mathrm{TMS})$, $0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and 0.05 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 136.6,116.8,105.5,90.2,74.9,67.1,37.3,25.9$, $25.8,18.3,18.1,-0.2,-4.4,-4.4,-4.5$ and $-4.6 ; m / z 426$ $\left(\mathrm{M}^{+}, 19 \%\right), 369(33), 147(79), 115(17)$ and 73 (98).

(4S,5S)-Undec-1-en-6-yne-4,5-diol (-)-10c

A solution of compound $\mathbf{1 0 g}(86 \mathrm{mg}, 0.21 \mathrm{mmol})$ and PTSA ($40 \mathrm{mg}, 0.23 \mathrm{mmol}$) in $\mathrm{MeOH}\left(4.0 \mathrm{~cm}^{3}\right)$ was stirred for 9 h at rt. The reaction mixture was concentrated to leave a residual oil, which was chromatographed with hexane-AcOEt (3:1) to afford title diol (-)-10c ($39 \mathrm{mg}, 100 \%$) as an oil (Found: C, 72.1; $\mathrm{H}, 10.1 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 72.5 ; \mathrm{H}, 10.0 \%\right) ;[a]_{\mathrm{D}}^{20}-20.0$ (c $0.50, \mathrm{CHCl}_{3}$); $v_{\max } / \mathrm{cm}^{-1} 3600(\mathrm{OH}), 3410(\mathrm{OH}), 2220(\mathrm{C} \equiv \mathrm{C})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.89(1 \mathrm{H}$, ddt, $J 17.2,10.2$ and $7.3,2-\mathrm{H})$, $5.21-5.12\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 4.24(1 \mathrm{H}, \mathrm{dt}, J 6.3$ and $2.0,5-\mathrm{H}), 3.66$ $(1 \mathrm{H}, \mathrm{ddd}, J 7.9,6.3$ and $4.0,4-\mathrm{H}), 2.55-2.20(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{and}$ $8-\mathrm{H}_{2}$ and $\left.\mathrm{OH} \times 2\right), 1.56-1.34\left(4 \mathrm{H}, \mathrm{m}, 9-\right.$ and $\left.10-\mathrm{H}_{2}\right)$ and 0.91 ($3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me}$); $\delta_{\mathrm{C}} 134.1,118.1,87.6,78.1,74.3,65.9,37.1$, $30.6,21.9,18.4$ and $13.5 ; m / z 182\left(\mathrm{M}^{+}, 30 \%\right), 155(20), 142(49)$, 131 (96), 115 (77), 77 (44) and 43 (100).

(3S,4S)-1-(Trimethylsilyl)hept-6-en-1-yne-3,4-diol (-)-10d

According to the procedure described for preparation of diol 10c from compound $\mathbf{1 0 g}$, substrate $\mathbf{1 0 h}(164 \mathrm{mg}, 0.38 \mathrm{mmol})$ was treated with PTSA ($84 \mathrm{mg}, 0.44 \mathrm{mmol}$) in $\mathrm{MeOH}\left(7.0 \mathrm{~cm}^{3}\right)$ to give title $\operatorname{diol}(-)-\mathbf{1 0 d}(75 \mathrm{mg}, 98 \%)$ as an oil [fast-atom bombardment (FAB) mass: Found: $\mathrm{M}^{+}-1,197.1004 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}$ requires m / z, 197.0998]; $[a]_{\mathrm{D}}^{20}-22.1\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3600(\mathrm{OH}), 3400(\mathrm{OH}), 2160(\mathrm{C} \equiv \mathrm{C})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.87$ $(1 \mathrm{H}, \mathrm{ddt}, J 17.2,9.9$ and $7.3,6-\mathrm{H}), 5.21-5.12\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right)$ $4.20(1 \mathrm{H}$, br t, $J 5.9,3-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.61-2.41(3 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}$ and $\mathrm{OH} \times 2), 2.23(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $0.18(9 \mathrm{H}, \mathrm{s}, \mathrm{TMS})$; $\delta_{\mathrm{C}} 133.9,118.2,103.5,91.7,74.0,66.1,37.0$ and -0.3 ; chemical ionisation (CI) mass: $m / z 199\left(\mathrm{M}^{+}+1,13 \%\right), 181(100), 128(18)$, 109 (18), 91 (18) and 73 (72).

(4S,5S)-4,5-Diacetoxyhept-1-en-6-yne (+)-10i

To a solution of diol $\mathbf{1 0 a}(63 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(200 \mathrm{mg}$, 1.98 mmol) and DMAP ($6.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added acetic anhydride ($207 \mathrm{mg}, 2.03 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at rt , diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with water (several times) and brine, dried and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (3:1) afforded title compound $(+) \mathbf{- 1 0 i}(102 \mathrm{mg}, 98 \%)$ as an oil (Found: C, 62.6; H, 6.7. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, 62.9; H, 6.7\%); $[a]_{\mathrm{D}}^{20}+58.4\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3330(\mathrm{C}=\mathrm{C}-\mathrm{H})$ and 1745 (CO); $\delta_{\mathrm{H}} 5.75(1 \mathrm{H}$, dddd, $J 14.2,9.8,7.3$ and $6.3,2-\mathrm{H})$, 5.45 $(1 \mathrm{H}, \mathrm{dd}, J, 5.1$ and $2.4,5-\mathrm{H}), 5.18-5.11\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.1-\mathrm{H}_{2}\right)$, 2.57-2.41 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $2.50(1 \mathrm{H}, \mathrm{d}, J 2.4,7-\mathrm{H}$), $2.11(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Ac})$ and $2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; \delta_{\mathrm{c}} 170.4,169.8,132.6,119.3,78.0$, $75.8,72.5,64.4,35.1,21.2$ and 21.1; CI mass $m / z 211\left(\mathrm{M}^{+}+1\right.$, $75 \%), 201$ (41) and 151 (100).

(4S,5S)-4,5-Diacetoxy-7-phenylhept-1-en-6-yne (+)-10j

According to the procedure described for preparation of diacetate $\mathbf{1 0 i}$ from compound 10a, diol $\mathbf{1 0 b}(82 \mathrm{mg}, 0.41 \mathrm{mmol})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(164 \mathrm{mg}, 1.62 \mathrm{mmol})$, DMAP $(4.9 \mathrm{mg}$, $0.04 \mathrm{mmol})$ and acetic anhydride ($170 \mathrm{mg}, 1.66 \mathrm{mmol}$) to give title diacetate $(+)-\mathbf{1 0 j}(110 \mathrm{mg}, 96 \%)$ as an oil (Found: C, 71.5; H, 6.4. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, $71.3 ; \mathrm{H}, 6.3 \%$); $[a]_{\mathrm{D}}^{21}+92.1$ (c $\left.0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2250(\mathrm{C}=\mathrm{C}), 1740(\mathrm{CO})$ and 1650 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 7.45-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.79(1 \mathrm{H}$, dddd, $J 14.2$, 10.3, 7.8 and $6.6,2-\mathrm{H})$, $5.69(1 \mathrm{H}, \mathrm{d}, J 6.4,5-\mathrm{H}), 5.26(1 \mathrm{H}$, ddd, $J 7.8,6.4$ and $4.4,4-\mathrm{H}), 5.18-5.11\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 2.61(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and $2.09(3 \mathrm{H}, \mathrm{s}$, Ac); $\delta_{\mathrm{C}} 170.1,169.5,132.3,131.9,128.9,128.3,121.7,118.7$, 86.9, 83.0, 72.5, 64.8, 34.9 and 20.9; CI mass $m / z 287\left(\mathrm{M}^{+}+1\right.$, 0.4%), 245 (16), 227 (100), 199 (14) and 185 (24).
(4S,5S)-4,5-Diacetoxyundec-1-en-6-yne (+)-10k
According to the procedure described for the preparation of compound 10i from diol 10a, substrate 10 c ($140 \mathrm{mg}, 0.77$ $\mathrm{mmol})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}$ ($311 \mathrm{mg}, 3.07 \mathrm{mmol}$), DMAP (9.4 $\mathrm{mg}, 0.08 \mathrm{mmol}$) and acetic anhydride ($322 \mathrm{mg}, 3.15 \mathrm{mmol}$) to give title compound (+)-10k ($196 \mathrm{mg}, 96 \%$) as an oil (Found: C, 67.8; H, 8.3. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ requires C, $67.6 ; \mathrm{H}, 8.3 \%$); $[a]_{\mathrm{D}}^{20}+72.9$ (c $\left.0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2250(\mathrm{C} \equiv \mathrm{C}), 1740(\mathrm{CO})$ and 1650 (C=C); $\delta_{\mathrm{H}} 5.73$ (1 H , dddd, $J 14.2,10.3,7.8$ and $6.4,2-\mathrm{H}$), 5.42 $(1 \mathrm{H}, \mathrm{dt}, J 4.4$ and $2.5,5-\mathrm{H}), 5.11-5.06\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right.$ and $\left.4-\mathrm{H}\right)$, $2.51(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.38(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.18(2 \mathrm{H}, \mathrm{td}, J 7.8$ and $\left.2.5,8-\mathrm{H}_{2}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.49-1.32(4 \mathrm{H}, \mathrm{m}$, $9-$ and $10-\mathrm{H}_{2}$) and $0.88(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me}) ; \delta_{\mathrm{C}} 170.0,169.6$, 132.4, 118.5, 88.2, 74.1, 72.7, 64.8, 34.9, 30.3, 21.8, 20.8, 18.3 and 13.5; CI mass $m / z 267\left(\mathrm{M}^{+}+1,7.0 \%\right), 207(100)$ and 165 (12).
(4S,5S)-4,5-Diacetoxy-7-(trimethylsily)hept-1-en-6-yne (+)-101 According to the procedure described for preparation of compound 10i from substrate 10a, diol 10 d ($206 \mathrm{mg}, 1.04 \mathrm{mmol}$) was treated with $\mathrm{Et}_{3} \mathrm{~N}(421 \mathrm{mg}, 4.16 \mathrm{mmol})$, DMAP (13 mg , 0.10 mmol) and acetic anhydride ($436 \mathrm{mg}, 4.27 \mathrm{mmol}$) to give title diacetate $(+)-\mathbf{1 0 1}(279 \mathrm{mg}, 95 \%)$ as an oil (Found: C, 59.5 ; $\mathrm{H}, 7.8 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ Si requires C, 59.5; H, 7.9\%); [a $]_{\mathrm{D}}^{18}+80.8(c 0.50$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2200(\mathrm{C}=\mathrm{C}), 1740(\mathrm{CO})$ and $1650(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 5.74(1 \mathrm{H}$, dddd, $J 14.2,10.3,7.8$ and $6.4,2-\mathrm{H}), 5.46(1 \mathrm{H}, \mathrm{d}$, $J 6.4,5-\mathrm{H}), 5.17-5.09\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.1-\mathrm{H}_{2}\right), 2.51(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 2.41(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and 0.16 ($9 \mathrm{H}, \mathrm{s}, \mathrm{TMS}$); $\delta_{\mathrm{C}} 170.0,161.4,132.2,118.7,98.9,92.6$, 72.5, 64.6, 34.8, 20.8 and -0.5 ; CI mass $m / z 283\left(\mathrm{M}^{+}+1\right.$, 29%), 223 (47), 200 (11) and 199 (100).

General procedure for Pauson-Khand reaction of enynes 10

Condition A. $\mathrm{Co}_{2}(\mathrm{CO})_{8}(0.60 \mathrm{mmol})$ was added to a solution of an enyne $\mathbf{1 0}(0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5.0 \mathrm{~cm}^{3}\right)$ at rt . After being stirred for 2 h , the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was evaporated to leave a residue, which was taken up in $\mathrm{MeCN}\left(5.0 \mathrm{~cm}^{3}\right)$. A solution of crude cobalt-complexed enyne $\mathbf{1 0}$ in MeCN was heated at $70-75^{\circ} \mathrm{C}$ until complete disappearance of the starting material ($c a .0 .3-5 \mathrm{~h}$). The reaction mixture was passed through a short pad of Celite and the filtrate was concentrated to dryness. Chromatography of the residue with hexane-AcOEt gave products $\mathbf{1 1}$ and 12.
Condition B. The crude cobalt-complexed enyne $\mathbf{1 0}$ was dissolved in THF $\left(10 \mathrm{~cm}^{3}\right)$ to which TMANO $\cdot 2 \mathrm{H}_{2} \mathrm{O}(3.00 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt until complete disappearance of the starting material (ca. 1-5 h). Work-up and chromatography as described in Condition A gave products $\mathbf{1 1}$ and $\mathbf{1 2}$. Chemical yield and product ratio between $\mathbf{1 1}$ and $\mathbf{1 2}$ are summarised in Table 1.

($5 S, 7 S, 8 S$)- and ($5 R, 7 S, 8 S$)-7,8-Dihydroxy-2-phenylbicyclo-[3.3.0]oct-1-en-3-one 11b and 12b

A mixture of stereoisomers 11b and 12b was obtained in the ratio 81:19 (entry 1) as an oil (Found: $\mathrm{M}^{+}, 230.0932 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 230.0943)$; $v_{\max } / \mathrm{cm}^{-1} 3650(\mathrm{OH}), 3400(\mathrm{OH})$ and $1705(\mathrm{CO})$; selected data for $\delta_{\mathrm{H}} 7.74-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.10$ ($19 / 100 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.49(81 / 100 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.37$ (19/100 H, m, $7-\mathrm{H}), 4.25(81 / 100 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.41(19 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and 3.22 ($81 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$); selected data for δ_{C} 208.6, 176.8, 138.4, $130.6,128.9,128.7,128.5,82.5,76.3,43.0,39.9$ and 38.3 ; $m / z 230\left(\mathrm{M}^{+}, 42 \%\right), 212$ (38), 196 (32), 186 (55), 170 (45), 142 (31), 129 (100), 115 (63) and 77 (35).

($5 S, 7 S, 8 S$)- and ($5 R, 7 S, 8 S$)-2-Butyl-7,8-dihydroxybicyclo-[3.3.0]oct-1-en-3-ones 11c and 12c

A mixture of stereoisomers 11c and 12c was obtained in a ratio 84:16 (entry 3) as an oil (Found: M^{+}, 210.1256. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$ requires M, 210.1256); $v_{\text {max }} / \mathrm{cm}^{-1} 3520(\mathrm{OH}), 3370(\mathrm{OH}), 1700$ (CO) and $1665(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}} 4.85(16 / 100 \mathrm{H}$, s,
$8-\mathrm{H}), 4.61$ ($84 / 100 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 4.41 ($84 / 100 \mathrm{H}$, ddd, $J 8.6,6.6$ and 3.6, 7-H), $4.32(16 / 100 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.17(16 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.06(84 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $0.90(84 / 100 \times 3 \mathrm{H}, \mathrm{t}, J 8.7$, Me); selected data for $\delta_{\mathrm{C}} 210.5,175.9,140.2,82.2,75.2,42.1,39.6$, 38.4, 30.3, 23.6, 22.7 and $13.8 ; \mathrm{m} / \mathrm{z} 210\left(\mathrm{M}^{+}, 49 \%\right)$, 192 (28), 166 (73), 150 (48), 137 (40), 109 (45), 95 (71), 79 (42) and 43 (100).
(5S,7S,8S)-7,8-Dihydroxy-2-(trimethylsilyl)bicyclo[3.3.0]oct-1-en-3-one (-)-11d
Compound (-)-11d was obtained (entry 5) as a solid, mp $126-127^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 58.6; H, 8.0. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Si}$ requires C, $58.4 ; \mathrm{H}, 8.0 \%$); $[\alpha]_{\mathrm{D}}^{17}-211.6$ (c 0.50 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3610(\mathrm{OH}), 3400(\mathrm{OH}), 1695(\mathrm{CO})$ and 1620 (C=C); $\delta_{\mathrm{H}} 4.59(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 2.66-2.51(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 6-\mathrm{H}$ and $\mathrm{OH} \times 2), 2.11(1 \mathrm{H}, \mathrm{dd}$, $J 17.8$ and $4.0,4-\mathrm{H}), 1.19(1 \mathrm{H}, \mathrm{td}, J 11.9$ and $8.6,6-\mathrm{H})$ and 0.19 ($9 \mathrm{H}, \mathrm{s}, \mathrm{TMS}$); $\delta_{\mathrm{C}} 214.0,190.2,140.2,81.7,76.3,43.4,43.3,38.2$ and -1.2; m/z $226\left(\mathrm{M}^{+}, 9.0 \%\right), 193(100), 182(32), 166(34), 151$ (50) and 73 (86).

(5S,7S,8S)-7,8-Bis(tert-butyldimethylsiloxy)bicyclo[3.3.0]oct-1-

 en-3-one (-)-11eCompound (-)-11e was obtained as an oil (Found: M^{+}, 382.2387. $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $M, 382.2360$); $[a]_{\mathrm{D}}^{20}-101.6$ (c $0.50, \mathrm{CHCl}_{3}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1705(\mathrm{CO})$ and $1640(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.98$ ($1 \mathrm{H}, \mathrm{d}, J 2.3,2-\mathrm{H}$), $4.43(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.27$ (1 H, ddd, J 6.9, 6.6 and $2.3,7-\mathrm{H}), 3.17(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and 6.6 , 4-H), $2.49(1 \mathrm{H}$, ddd, J 12.5, 8.3 and $6.6,6-\mathrm{H}), 2.11(1 \mathrm{H}$, dd, $J 17.8$ and 3.3, 4-H), 1.14 (1 H , ddd, $J 12.5,10.6$ and $6.9,6-\mathrm{H}$), $0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.87\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.08(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 210.6,185.5$, 126.7, 82.5, 76.4, 43.0, 41.4, 39.1, 25.8, 25.7, 18.0, 17.9, -4.3, $-4.6,-4.7$ and $-4.7 ; m / z 382\left(\mathrm{M}^{+}, 13 \%\right), 339$ (12), 325 (66), 209 (18), 147 (93), 91 (12) and 73 (100).
(5R,7S,8S)-7,8-Bis(tert-butyldimethylsiloxy)bicyclo[3.3.0]oct-1-en-3-one (+)-12e
Compound $(-)$-12e was obtained as a solid, $\mathrm{mp} 41-42{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{C}, 62.4 ; \mathrm{H}, 10.1 . \mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{C}, 62.8 ; \mathrm{H}, 10.0 \%) ;[a]_{\mathrm{D}}^{20}+185.4\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1705$ (CO) and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 6.01(1 \mathrm{H}, \mathrm{t}, J 2.0,2-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.24(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{dd}$, $J 18.2$ and $6.9,4-\mathrm{H}), 2.07(1 \mathrm{H}$, dd, $J 18.2$ and $3.0,4-\mathrm{H}), 2.05$ ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $1.75(1 \mathrm{H}, \mathrm{ddd}, J$ 13.5, 9.6 and 8.3, 6-H), 0.92 $\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.12(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 209.3$, 189.4, $125.1,80.6,79.8,43.9,39.3,38.6,25.8,25.7,18.1,17.9,-4.6$, -4.7 and $-4.8 ; \mathrm{m} / \mathrm{z} 382\left(\mathrm{M}^{+}, 12 \%\right), 325$ (93), 224 (20), 147 (100), 91 (15) and 73 (56).

(5S,7S,8S)-7,8-Bis(tert-butyldimethylsiloxy)-2-phenylbicyclo-[3.3.0]oct-1-en-3-one (-)-11f

Compound (-)-11f was obtained as an oil (Found: M^{+}, 458.2697. $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $M, 458.2673$); $[\alpha]_{\mathrm{D}}^{20}-70.1(c 0.50$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1705(\mathrm{CO}) ; \delta_{\mathrm{H}} 7.53-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.42-7.29 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.59(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.34(1 \mathrm{H}$, ddd, $J 6.3,4.3$ and $1.7,7-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{dd}, J 17.9$ and $6.6,4-\mathrm{H}), 2.64(1 \mathrm{H}$, ddd, J 13.2, 9.2 and $6.3,6-\mathrm{H}), 2.28$ $(1 \mathrm{H}, \mathrm{dd}, J 17.9$ and $3.3,4-\mathrm{H}), 1.22(1 \mathrm{H}$, ddd, $J 13.2,8.6$ and $4.3,6-\mathrm{H}), 0.88\left(9 \mathrm{H}, \mathrm{s},{ }^{\top} \mathrm{Bu}\right), 0.81\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; δ_{C} 208.7, 179.1, 137.0, 131.3, 128.7, 128.2, 128.1, 81.7, 76.1, $44.0,39.3,38.6,25.7,17.9,17.8,-4.3,-4.4,-4.8$ and -4.8 ; $m / z 458\left(\mathrm{M}^{+}, 27 \%\right), 401(21), 300(49), 284(40), 167(28), 147$ (25), 73 (81) and 57 (100).

(5R,7S,8S)-7,8-Bis(tert-butyldimethylsiloxy)-2-phenylbicyclo-

 [3.3.0]oct-1-en-3-one (+)-12fCompound $(+)-\mathbf{1 2 f}$ was obtained as an oil (Found: C, 67.7; H, 9.2. $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires C, 68.1; H, 9.2\%); $[a]_{\mathrm{D}}^{20}+2.4(c 0.50$,
CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 1700(\mathrm{CO}) ; \delta_{\mathrm{H}} 7.44-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.88$ $(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{d}, J 4.3,7-\mathrm{H}), 3.34(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.84$ $(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and $6.6,4-\mathrm{H}), 2.32(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and 3.3 , $4-\mathrm{H}), 2.08(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.57(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 0.92\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right)$, $0.57\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.02(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me})$ and $-0.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{c}} 208.5,183.7,138.4,131.6$, 129.2, 128.2, 128.0, 81.4, 78.0, 43.2, 40.8, 38.6, 25.8, 25.5, 17.9, 17.7, -4.2, $-4.4,-4.5$ and $-5.6 ; m / z 458\left(\mathrm{M}^{+}, 29 \%\right), 401$ (52), 300 (65), 284 (53), 147 (100), 73 (75) and 57 (24).

($5 S, 7 S, 8 S$)-2-Butyl-7,8-bis(tert-butyldimethylsiloxy)bicyclo-[3.3.0]oct-1-en-3-one (-)-11g

Compound (-)-11g was obtained as an oil (Found: C, $65.5 ; \mathrm{H}, 10.6 . \mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 10.6 \%$); $[a]_{\mathrm{D}}^{19}-101.0\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1700(\mathrm{CO})$ and 1670 (C=C); $\delta_{\mathrm{H}} 4.45(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and $6.6,4-\mathrm{H}), 2.54(1 \mathrm{H}$, ddd, $J 13.2$, 9.2 and $6.6,6-\mathrm{H}), 2.30-2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.06(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and $3.0,4-\mathrm{H}), 1.52-1.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.06(1 \mathrm{H}$, ddd, $J 13.2$, 9.2 and $4.6,6-\mathrm{H}), 0.89(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me}), 0.88\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.85$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 2)$ and 0.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $\delta_{\mathrm{C}} 211.1,177.5,137.8,82.2,75.4,43.2,39.7,38.6$, $30.5,25.8,25.7,24.0,22.8,18.0,17.9,13.9,-4.4,-4.5,-4.6$ and -4.7; m/z $438\left(\mathrm{M}^{+}, 59 \%\right), 381$ (48), 280 (44), 264 (38), 147 (20) and 73 (15).

(5R,7S,8S)-2-Butyl-7,8-bis(tert-butyldimethylsiloxy)bicyclo-

 [3.3.0]oct-1-en-3-one (+)-12gCompound $(+)-\mathbf{1 2 g}$ was obtained as an oil (Found: C, 65.4; $\mathrm{H}, 10.7 \%) ;[a]_{\mathrm{D}}^{20}+15.6\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1700(\mathrm{CO})$ and $1660(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 4.75(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{dt}, J 6.3$ and $2.0,7-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and 6.3 , $4-\mathrm{H}), 2.36-2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.02(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and 3.0 , $6-\mathrm{H}), 1.98(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.53(1 \mathrm{H}$, ddd, $J 12.9,11.9$ and 6.3 , $4-\mathrm{H}), 1.46-1.22\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.93-0.86\left(21 \mathrm{H}, \mathrm{m},{ }^{\mathrm{t}} \mathrm{Bu} \times 2\right.$ and $\mathrm{Me}), 0.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 210.4,179.2,139.0,81.5,79.8,42.3$, $39.3,38.6,31.1,25.9,25.8,23.0,18.0,17.9,14.0,-4.1,-4.2$, -4.5 and $-4.8 ; \mathrm{m} / \mathrm{z} 438$ ($\mathrm{M}^{+}, 57 \%$), 381 (46), 280 (43), 264 (38), 147 (20) and 73 (13).
(5S,7S,8S)-7,8-Bis(tert-butyldimethylsiloxy)-2-(trimethyl-silyl)bicyclo[3.3.0]oct-1-en-3-one (-)-11h
Compound (-)-11h was obtained as an oil (Found: M^{+}, 454.2757. $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{3}$ requires $M, 454.2755$); $[\alpha]_{\mathrm{D}}^{21}-114.5$ (c $\left.0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1690(\mathrm{CO})$ and $1620(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 4.49$ ($1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.67(1 \mathrm{H}$, dd, $J 17.5$ and $6.9,4-\mathrm{H}), 2.55(1 \mathrm{H}$, ddd, $J 13.5,10.6$ and 5.9 , $6-\mathrm{H}), 2.05(1 \mathrm{H}, \mathrm{dd}, J 17.5$ and $4.0,4-\mathrm{H}), 1.13(1 \mathrm{H}$, ddd, $J 13.5$, 7.3 and $2.3,6-\mathrm{H}), 0.87\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.82\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.22(9 \mathrm{H}$, s, TMS), $0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.04(3 \mathrm{H}, \mathrm{s} . \mathrm{Me})$ and $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 215.5,192.5,137.4,79.9,75.6,45.4$, $41.2,38.7,25.7,25.6,17.9,17.8,-1.0,-4.3,-4.3,-4.6$ and -4.8; m/z 454 ($\left.\mathrm{M}^{+}, 16 \%\right), 397$ (14), 296 (43), 147 (31), 133 (16), 73 (99) and 57 (100).

(5S,7S,8S)- and (5R,7S,8S)-7,8-Diacetoxybicyclo[3.3.0]oct-1-en-3-one 11i and 12i

A mixture of title diacetates $\mathbf{1 1 i}$ and $\mathbf{1 2 i}$ was obtained in the ratio 76:24 (entry 15) as an oil (Found: $\mathrm{M}^{+}, 238.0830 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$ requires M, 238.0841); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ (CO), 1715 (CO) and $1645(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}}: 6.23(76 / 100 \mathrm{H}, \mathrm{d}, J 2.4$, $2-\mathrm{H}), 6.03(24 / 100 \mathrm{H}, \mathrm{t}, J 2.0,2-\mathrm{H}), 5.84(24 / 100 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, 5.61 ($76 / 100 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 5.42 ($76 / 100 \mathrm{H}$, ddd, $J 8.8,7.3$ and $3.9,7-\mathrm{H}), 5.29(24 / 100 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.33(24 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $3.19(76 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.15(24 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.12$ $(76 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.11(76 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and 2.08 (24/100 $\times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$; $m / z 238\left(\mathrm{M}^{+}, 12 \%\right), 196$ (78), 154 (100), 136 (83), 110 (61), 91 (24) and 43 (86).

($5 S, 7 S, 8 S$)- and ($5 R, 7 S, 8 S$)-7,8-Diacetoxy-2-phenylbicyclo-[3.3.0]oct-1-en-3-one 11j and 12j

A mixture of title diacetates 11i and 12i was obtained in the ratio 87:13 (entry 17) as an oil (Found: C, 68.7; H, 5.8. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$ requires C, 68.8; H, 5.8%); $v_{\max } / \mathrm{cm}^{-1} 1740(\mathrm{CO})$ and $1715(\mathrm{CO})$; selected data for $\delta_{\mathrm{H}}: 7.49-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.28$ ($13 / 100 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}$), 5.73 ($87 / 100 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 5.46 ($87 / 100 \mathrm{H}$, ddd, $J 8.3,7.3$ and $3.4,7-\mathrm{H}), 5.26(13 / 100 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.37(13 /$ $100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.30(87 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.18(87 / 100 \times 3 \mathrm{H}$, s , Ac), $2.13(13 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.04(13 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and $2.03(87 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; ~ m / z 314\left(\mathrm{M}^{+}, 7.0 \%\right)$, 254 (44), 230 (46), 212 (85), 194 (85), 186 (39) and 166 (24).

($5 S, 7 S, 8 S$)- and ($5 R, 7 S, 8 S$)-7,8-Diacetoxy-2-butylbicyclo-[3.3.0]oct-1-en-3-ones 11k and 12k

A mixture of title diacetates $\mathbf{1 1 k}$ and $\mathbf{1 2 k}$ was obtained in the ratio 88:12 (entry 19) as an oil (Found: C, 65.2; H, 7.6. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$ requires C, 65.3; $\mathrm{H}, 7.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ (CO), 1710 (CO) and $1675(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}}: 5.98(12 / 100 \mathrm{H}, \mathrm{s}$, $8-\mathrm{H}), 5.71(88 / 100 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 5.37(88 / 100 \mathrm{H}, \mathrm{td}, J 7.3$ and 3.4 , $7-\mathrm{H}), 5.22$ ($12 / 100 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 3.15 ($12 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.07 $(88 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.13(12 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.09(12 / 100 \times 3$ $\mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.08(88 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.05(88 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and $0.87\left(88 / 100 \times 3 \mathrm{H}, \mathrm{t}, J 7.3\right.$, Me); selected data for $\delta_{\mathrm{C}}: 209.7$, $170.9,170.5,170.0,141.8,80.7,73.4,42.5,40.0,36.8,30.7,24.1$, 23.0, 21.3, 21.2 and 14.3; m/z $294\left(\mathrm{M}^{+}, 8.0 \%\right), 252(27), 210(76)$, 192 (35), 166 (26) and 43 (100).
($\mathbf{5 S , 7 S , 8 S \text {)-7,8-Diacetoxy-2-(trimethylsilyl)bicyclo[3.3.0]oct-1- }}$ en-3-one (-)-111
Compound $(-)-111$ was obtained as an oil (Found: C, $58.1 ; \mathrm{H}$, 7.2. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Si}$ requires C, $\left.58.0 ; \mathrm{H}, 7.1 \%\right)$; $[a]_{\mathrm{D}}^{19}-130.0$ (c 0.50 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1740(\mathrm{CO}), 1705(\mathrm{CO})$ and $1630(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 5.65(1 \mathrm{H}, \mathrm{d}, J 3.4,8-\mathrm{H}), 5.37(1 \mathrm{H}, \mathrm{td}, J 7.3$ and $3.4,7-\mathrm{H})$, $3.18(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.72-2.62(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 6-\mathrm{H}), 2.10(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Ac}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.15-1.96(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 1.26(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H})$ and $0.20(9 \mathrm{H}, \mathrm{s}$, TMS $)$; $\delta_{\mathrm{C}} 212.9,184.9,170.0,169.5$, 141.6, 79.7, 74.3, 43.3, 43.2, 35.8, 20.9, 20.8 and -1.5; m/z 310 ($\mathrm{M}^{+}, 1.5 \%$), 295 (28), 253 (15), 211 (16), 193 (85), 117 (30), 75 (22) and 43 (100).

(5S,7S,8S)-7-(tert-Butyldimethylsiloxy)-8-hydroxy-2-(trimethyl-sily)bicyclo[3.3.0]oct-1-en-3-one (-)-15

To a solution of bis-silyl ether $\mathbf{1 1 h}(41.4 \mathrm{mg}, 0.09 \mathrm{mmol})$ in THF ($2.0 \mathrm{~cm}^{3}$) was added a solution of TBAF in THF $(1.0 \mathrm{~mol}$ $\left.\mathrm{dm}^{-3} ; 0.10 \mathrm{~cm}^{3}, 0.10 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 15 min at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with AcOEt, washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexaneAcOEt (10:1) gave the title compound (-)-15 ($23.2 \mathrm{mg}, 75 \%$) as an oil (Found: C, 60.3; H, 9.4. $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{C}, 60.0$; $\mathrm{H}, 9.5 \%) ;[a]_{\mathrm{D}}^{20}-137.6\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3675(\mathrm{OH})$, $3425(\mathrm{OH}), 1695(\mathrm{CO})$ and $1620(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 4.51(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$, $4.30(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.01(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{dd}, J 17.8$ and $6.6,4-\mathrm{H}), 2.46(1 \mathrm{H}, \mathrm{dt}, J 12.2$ and $7.6,6-\mathrm{H}), 2.08(1 \mathrm{H}, \mathrm{dd}$, $J 17.8$ and $4.0,4-\mathrm{H}), 1.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.18(1 \mathrm{H}, \mathrm{td}, J 12.2$ and 7.6, 6-H), $0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.24(9 \mathrm{H}, \mathrm{s}$, TMS $), 0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 214.0,190.7$, 139.7, 81.9, 76.6, 43.6, $43.0,38.9,25.8,18.0,-1.2$ and $-4.7 ; m / z 340\left(\mathrm{M}^{+}, 1.4 \%\right), 283$ (100), 267 (15), 193 (20), 149 (12) and 75 (80).
(5S,7S,8S)-8-Acetoxy-7-(tert-butyldimethylsiloxy)-2-(trimethyl-silyl)bicyclo[3.3.0]oct-1-en-3-one (-)-16
According to the procedure described for the preparation of diacetate 10i from diol 10a, the title compound (-)-16 (40.2 mg , 79%) was obtained from the alcohol $15(45.2 \mathrm{mg}, 0.13 \mathrm{mmol})$ as an oil (Found: C, 59.6; H, 9.0. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}_{2}$ requires C, 59.6; $\mathrm{H}, 9.0 \%) ;[a]_{\mathrm{D}}^{17}-88.0\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1745(\mathrm{CO}), 1695$ (CO) and $1625(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.44(1 \mathrm{H}, \mathrm{d}, J 2.6,8-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{td}$, $J 6.3$ and $2.6,7-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{dd}, J 17.5$
and 6.6, 4-H), $2.52(1 \mathrm{H}$, ddd, J 12.9, 8.9 and 6.3, $6-\mathrm{H}), 2.10$ $(1 \mathrm{H}, \mathrm{dd}, J 17.5$ and $4.0,4-\mathrm{H}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.23(1 \mathrm{H}$, ddd, $J 12.9,10.2$ and $6.3,6-\mathrm{H}), 0.86\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.21(9 \mathrm{H}, \mathrm{s}$, TMS $)$, $0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 213.8,186.8,169.4$, $140.9,78.9,76.5,44.3,42.8,39.3,25.7,21.0,17.9,-1.3,-4.9$ and $-5.0 ; \mathrm{m} / \mathrm{z} 382\left(\mathrm{M}^{+}, 0.2 \%\right), 367(22), 325(87), 307(18), 117$ (100), 75 (90) and 43 (50).
(2S,3S)-2,3-(Isopropylidenedioxy)pent-4-en-1-ol (-)-17
A solution of DMSO $(7.89 \mathrm{~g}, 101 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(35 \mathrm{~cm}^{3}\right)$ was gradually added to a solution of oxalyl dichloride $(6.41 \mathrm{~g}$, $50.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(35 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After stirring of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for 15 min , a solution of the threitol derivative $3(6.97 \mathrm{~g}, 25.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(35 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was stirred at the same temperature for 1 h . $\mathrm{Et}_{3} \mathrm{~N}(15.3 \mathrm{~g}, 151 \mathrm{mmol})$ was added to the reaction mixture, which was then gradually warmed to rt and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed successively with water and brine, dried and concentrated to leave the crude aldehyde.
To a suspension of potassium tert-butoxide $(8.50 \mathrm{~g}, 75.8$ mmol) in THF ($120 \mathrm{~cm}^{3}$) was added portionwise methyltriphenylphosphonium bromide ($27.1 \mathrm{~g}, 75.8 \mathrm{mmol}$) and the THF solution was stirred at rt for 2 h . A solution of the crude aldehyde in THF ($50 \mathrm{~cm}^{3}$) was added to this THF solution of the resulting methylenetriphenylphosphorane at rt . After being stirred for 1 h , the reaction mixture was quenched by addition of water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water and brine, dried and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt $(50: 1)$ to give the corresponding olefin derivative (5.78 g).

TBAF as a solution in THF $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 25.4 \mathrm{~cm}^{3}, 25.4\right.$ mmol) was added to a solution of the crude olefin derivative $(5.78 \mathrm{~g}, 21.2 \mathrm{mmol})$ in THF $\left(260 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After being stirred for 2.5 h at rt , the reaction mixture was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (1:2) afforded title alcohol (-)-17(3.18 g, 80\%) as a pale yellow oil (Found: $\mathrm{C}, 60.7 ; \mathrm{H}, 8.8 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C , $60.7 ; \mathrm{H}, 8.9 \%) ;[\alpha]_{\mathrm{D}}^{18}-3.1\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3650(\mathrm{OH})$ and $3450(\mathrm{OH}) ; \delta_{\mathrm{H}} 5.82(1 \mathrm{H}$, ddd, $J 17.2,10.2$ and $7.6,4-\mathrm{H})$, $5.37(1 \mathrm{H}, \mathrm{d}, J 17.2,5-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{d}, J 10.2,5-\mathrm{H}), 4.29(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 3.90-3.70(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $2.21(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $1.43(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 2) ; \delta_{\mathrm{C}} 135.0,119.0$, 109.2, 81.1, 78.3, 60.8, 26.9 and 26.9; $m / z 158\left(\mathrm{M}^{+}, 1.9 \%\right), 143$ (26), 127 (6.7), 113 (1.4) and 43 (100).

(3S,4S)-3,4-Isopropylidenedioxy-7-(trimethylsilyl)hept-1-en-6yne (+)-18

According to the procedure described for the preparation of the hexynol $\mathbf{4}$ from the threitol derivative $\mathbf{3}$, compound $17(1.00 \mathrm{~g}$, 6.32 mmol) was successively treated with $\mathrm{Tf}_{2} \mathrm{O}$ and lithium (trimethylsilyl)acetylide to give title compound $(+)-\mathbf{1 8}(680 \mathrm{mg}$, 45%) as a pale yellow oil (Found: C, 65.6; H, 9.3. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}$ requires C, $65.5 ; \mathrm{H}, 9.3 \%) ;[a]_{\mathrm{D}}^{19}+8.6\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ $2160(\mathrm{C} \equiv \mathrm{C})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.87(1 \mathrm{H}$, ddd, $J 17.1,10.7$ and $7.3,2-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{d}, J 10.7,1-\mathrm{H})$, $4.30(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.79(1 \mathrm{H}$, ddd, J8.3, 5.9 and $4.4,4-\mathrm{H}), 2.61$ $(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $5.9,5-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 4.4 , $5-\mathrm{H}), 1.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.15(9 \mathrm{H}, \mathrm{s}$, TMS); $\delta_{\mathrm{C}} 135.1,118.7,109.0,101.7,87.4,81.5,78.2,27.1,27.0$, 22.9 and $-0.1 ; m / z 165\left(\mathrm{M}^{+}-\mathrm{TMS}, 4.1 \%\right), 152$ (0.8), 135 (3.8), 127 (14), 109 (3.3) and 43 (100).

(3S,4S)-3,4-Isopropylidenedioxy-7-phenylhept-1-en-6-yne

 (+)- 19According to the procedure described for the preparation of the hexynol $\mathbf{4}$ from the threitol $\mathbf{3}$, compound $17(1.20 \mathrm{~g}, 7.60 \mathrm{mmol})$ was successively treated with $\mathrm{Tf}_{2} \mathrm{O}$ and lithium phenylacetylide
to give title compound $(+)-19(819 \mathrm{mg}, 44 \%)$ as a pale yellow oil (Found: C, 79.4; H, 7.6. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, 79.3; H, 7.5\%); $[a]_{\mathrm{D}}^{20}+4.2\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 7.43-7.36$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.31-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.90(1 \mathrm{H}$, ddd, $J 17.1$, 10.3 and $6.8,2-\mathrm{H}), 5.45(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{d}$, $J 10.3,1-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.89(1 \mathrm{H}$, ddd, $J 7.8,5.9$ and $4.9,4-\mathrm{H}), 2.79(1 \mathrm{H}$, dd, $J 17.1$ and $5.9,5-\mathrm{H}), 2.74(1 \mathrm{H}$, dd, $J 17.1$ and $4.9,5-\mathrm{H}), 1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 135.0,131.5,128.2,127.8,123.4,118.8,109.2,85.0,82.8$, 81.7, 78.5, 27.0 and 22.5; m/z $242\left(\mathrm{M}^{+}, 3.3 \%\right), 227$ (57), 199 (1.5), 185 (23), 167 (73), 156 (37), 127 (55) and 115 (100).
(3S,4S)-3,4-(Isopropylidenedioxy)undec-1-en-6-yne (+)-20
According to the procedure described for the preparation of the hexynol 4 from threitol derivative 3, compound $17(1.60 \mathrm{~g}$, 10.1 mmol) was successively treated with $\mathrm{Tf}_{2} \mathrm{O}$ and lithium hexylide to give title compound $(+)-\mathbf{2 0}(970 \mathrm{mg}, 43 \%)$ as a pale yellow oil (Found: C, 75.4; H, 9.9. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.6$; $\mathrm{H}, 10.0 \%) ;[a]_{\mathrm{D}}^{27}+11.3\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1645(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 5.85(1 \mathrm{H}$, ddd, $J 17.1,10.3$ and $6.8,2-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{d}$, $J 17.1,1-\mathrm{H}), 5.23(1 \mathrm{H}, \mathrm{d}, J 10.3,1-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.76$ (1 H , ddd, $J 8.3,5.9$ and $4.9,4-\mathrm{H}), 2.51(1 \mathrm{H}$, ddt, $J 16.6,5.9$ and $2.4,5-\mathrm{H}), 2.46(1 \mathrm{H}$, ddt, $J 16.6,4.9$ and $2.4,5-\mathrm{H}), 2.15$ ($2 \mathrm{H}, \mathrm{tt}, J 6.8$ and $2.4,8-\mathrm{H}_{2}$), 1.49-1.33 ($4 \mathrm{H}, \mathrm{m}, 9-\mathrm{and} 10-\mathrm{H}_{2}$), $1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.86(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me})$; $\delta_{\mathrm{C}} 135.2,118.5,109.0,82.8,81.6,78.8,74.8,30.9,27.0,21.9$, 21.8, 18.4 and 13.5; m/z $222\left(\mathrm{M}^{+}, 0.6 \%\right), 207$ (32), 175 (1.0), 147 (6.5), 127 (74), 98 (86) and 43 (100).
(3S,4S)-7-(Trimethylsilyl)hept-1-en-6-yne-3,4-diol (-)-21d
A solution of compound $18(1.10 \mathrm{~g}, 4.60 \mathrm{mmol})$ and PTSA ($175 \mathrm{mg}, 0.92 \mathrm{mmol}$) in $\mathrm{MeOH}\left(45 \mathrm{~cm}^{3}\right.$) was stirred at rt for 24 h , and MeOH was evaporated off. The residue was chromatographed with hexane-AcOEt (2:1) to give title diol (-)-21d ($887 \mathrm{mg}, 97 \%$) as an oil (Found: C, 60.5; H, 9.0. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Si}$ requires C, $60.6 ; \mathrm{H}, 9.2 \%) ;[a]_{\mathrm{D}}^{27}-25.9\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ $3580(\mathrm{OH}), 3430(\mathrm{OH}), 2160(\mathrm{C}=\mathrm{C})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.88$ (1 H , ddd, $J 17.1,10.7$ and $6.4,2-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H})$, 5.26 ($1 \mathrm{H}, \mathrm{d}, J 10.7,1-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $5.4,5-\mathrm{H}), 2.54(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.51$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.46(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $6.8,5-\mathrm{H})$ and $0.15(9 \mathrm{H}$, s , TMS); $\delta_{\mathrm{C}} 136.9,117.6,102.5,87.8,74.7,72.2,24.8$ and -0.3 ; $m / z 198\left(\mathrm{M}^{+}, 0.2 \%\right), 130(35)$ and 73 (100).

(3S,4S)-Hept-1-en-6-yne-3,4-diol (-)-21a

A suspension of the above silane $\mathbf{2 1 d}(627 \mathrm{mg}, 3.16 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(873 \mathrm{mg}, 6.32 \mathrm{mmo})$ in $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$ was stirred at rt overnight, and MeOH was evaporated off. The residue was diluted with water and extracted with AcOEt, which was washed successively with water and brine, dried and concentrated to dryness. Chromatography of the residue with hexaneAcOEt ($1: 1$) afforded the title diol (-)-21a ($330 \mathrm{mg}, 83 \%$), as an oil (FAB mass: Found: $\mathrm{M}^{+}+1,127.0762 . \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}$ requires $\mathrm{m} / \mathrm{z}, 127.0759) ;[a]_{\mathrm{D}}^{18}-22.4\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3600$ $(\mathrm{OH}), 3440(\mathrm{OH}), 3340(\mathrm{C} \equiv \mathrm{C}-\mathrm{H}), 2110(\mathrm{C} \equiv \mathrm{C})$ and $1645(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 5.88(1 \mathrm{H}$, ddd, $J 17.1,10.3$ and $5.9,2-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}$, $J 17.1,1-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{d}, J 10.3,1-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.68$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.56(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.9, \mathrm{OH}), 2.53(1 \mathrm{H}$, ddd, J 17.1, 5.4 and $2.9,5-\mathrm{H}), 2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.43(1 \mathrm{H}$, ddd, $J 17.1,6.8$ and $2.9,5-\mathrm{H})$ and $2.07(1 \mathrm{H}, \mathrm{t}, J 2.9,7-\mathrm{H}) ; \delta_{\mathrm{C}} 136.8$, 117.8, 80.4, 74.7, 72.2, 70.9 and 23.2; CI mass $m / z 127\left(\mathrm{M}^{+}+1\right.$, 29%) and 109 (100).

(3S,4S)-7-Phenylhept-1-en-6-yne-3,4-diol (-)-21b

According to the procedure described for the preparation of diol 21d from compound 18, the title compound (-)-21b (674 $\mathrm{mg}, 88 \%$) was obtained from its protected form $19(919 \mathrm{mg}$, 3.80 mmol) as a solid, $\mathrm{mp} 60.0-62.0^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 77.3; H, 7.1. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 77.2; H, 7.0\%); $[a]_{\mathrm{D}}^{26}-11.4\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3590(\mathrm{OH}), 3450(\mathrm{OH})$
and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 7.45-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.33-7.25(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 5.93(1 \mathrm{H}$, ddd, $J 17.1,10.7$ and $4.4,2-\mathrm{H}), 5.44(1 \mathrm{H}, \mathrm{d}, J$ 17.1, 1-H), $5.30(1 \mathrm{H}, \mathrm{d}, J 10.7,1-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.76$ (1 $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $5.4,5-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{dd}, J$ 17.1 and $6.8,5-\mathrm{H}), 2.51(1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{OH})$ and $2.42(1 \mathrm{H}, \mathrm{d}, J$ 4.4, OH); $\delta_{\mathrm{C}} 137.0,131.6,128.3,128.0,123.2,117.8,85.4,83.2$, 74.8, 72.5 and 24.4; $m / z 202\left(\mathrm{M}^{+}, 0.8 \%\right), 173$ (8.0) and 115 (100).
(3S,4S)-Undec-1-en-6-yne-3,4-diol (-)-21c
According to the procedure described for the preparation of diol 21d from its protected form 18, the title compound (-)-21c ($718 \mathrm{mg}, 96 \%$) was obtained from the precursor $20(917 \mathrm{mg}$, 4.12 mmol) as a solid, $\mathrm{mp} 40.0-41.0^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 72.7; H, 9.8. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $72.5 ; \mathrm{H}, 10.0 \%$); $[a]_{\mathrm{D}}^{28}-32.4\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3590(\mathrm{OH}), 3450(\mathrm{OH})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.87(1 \mathrm{H}$, ddd, J 17.1, 10.3 and $5.9,2-\mathrm{H})$, $5.38(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{d}, J 10.3,1-\mathrm{H}), 4.13(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.53(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{OH}), 2.49(1 \mathrm{H}$, d, $J 5.4, \mathrm{OH}$), $2.48(1 \mathrm{H}, \mathrm{ddt}, J 16.6,5.4$ and $2.4,5-\mathrm{H}), 2.38$ $(1 \mathrm{H}, \mathrm{ddt}, J 16.6,6.4$ and $2.4,5-\mathrm{H}), 2.16(2 \mathrm{H}, \mathrm{tt}, J 6.8$ and 2.4 , $\left.8-\mathrm{H}_{2}\right), 1.51-1.33\left(4 \mathrm{H}, \mathrm{m}, 9-\mathrm{and} 10-\mathrm{H}_{2}\right)$ and $0.90(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{Me}) ; \delta_{\mathrm{C}} 137.0,117.5,83.7,75.2,74.8,72.5,31.0,23.7,21.9,18.4$ and $13.6 ; \mathrm{m} / \mathrm{z} 182\left(\mathrm{M}^{+}, 2.3 \%\right), 164$ (1.8), 153 (11), 135 (11) and 125 (40).
(3S,4S)-3,4-Bis(tert-butyldimethylsiloxy)hept-1-en-6-yne (-)-21e According to the procedure described for the preparation of bis-silyl ether 10e from diol 10a, title compound (-)-21e (248 $\mathrm{mg}, 89 \%$) was obtained from diol 21a ($100 \mathrm{mg}, 0.79 \mathrm{mmol}$) as an oil (Found: C, 64.1; H, 10.9. $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires C, 64.3; H , $10.8 \%) ;[a]_{\mathrm{D}}^{21}-79.9\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{C} \equiv \mathrm{C}-\mathrm{H})$, $2110(\mathrm{C} \equiv \mathrm{C})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.94(1 \mathrm{H}$, ddd, $J 17.1,10.7$ and 4.4, 2-H), $5.28(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{d}, J 10.7$, $1-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.79(1 \mathrm{H}$, ddd, $J 8.8,4.4$ and 3.4 , 4-H), $2.48(1 \mathrm{H}$, ddd, J 17.1, 3.4 and $2.9,5-\mathrm{H}), 2.09(1 \mathrm{H}$, ddd, J 17.1, 8.8 and $2.9,5-\mathrm{H}), 1.91(1 \mathrm{H}, \mathrm{t}, J 2.9,7-\mathrm{H}), 0.91(18 \mathrm{H}$, s , $\left.{ }^{\mathrm{t}} \mathrm{Bu} \times 2\right), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.07(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me})$ and $0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 136.3,115.5,83.4,74.6,69.1$, 25.8, 21.6, 18.2, 18.1, $-4.4,-4.6,-4.8$ and $-5.0 ; \mathrm{m} / \mathrm{z} 354$ $\left(\mathrm{M}^{+}, 0.8 \%\right), 339$ (0.9), 297 (56), 241 (10), 189 (14), 147 (100), 133 (12) and 115 (19).
(3S,4S)-3,4-Bis(tert-butyldimethylsiloxy)-7-phenylhept-1-en-6yne (-)-21f
According to the procedure described for the aforementioned preparation (10a $\rightarrow \mathbf{1 0 e}$), , itle compound $(-)$-21f ($409 \mathrm{mg}, 96 \%$) was obtained from diol 21b ($200 \mathrm{mg}, 0.99 \mathrm{mmol}$) as an oil (Found: C, 69.4; H, 9.9. $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires C, 69.7; $\mathrm{H}, 9.8 \%$); [a] $]_{\mathrm{D}}^{30}-70.9$ ($\left.c 0.50, \mathrm{CHCl}_{3}\right)$; $v_{\max } / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 7.45-7.37$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-7.22(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.99(1 \mathrm{H}, \mathrm{ddd}, J 17.1$, 10.3 and $4.4,2-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{d}$, $J 10.3,1-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.88(1 \mathrm{H}$, ddd, $J 9.3,4.4$ and $2.9,4-\mathrm{H}), 2.72(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $2.9,5-\mathrm{H}), 2.35(1 \mathrm{H}$, dd, $J 17.1$ and $9.3,5-\mathrm{H}), 0.94\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.93\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.18$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.08(3 \mathrm{H}, \mathrm{s}$, Me); $\delta_{\mathrm{C}} 136.4,131.5,128.1,127.4,124.2,115.5,89.2,81.3,74.7$, $25.8,25.8,22.5,18.2,18.1,-4.4,-4.6,-4.7$ and $-4.9 ; m / z 430$ ($\left.\mathrm{M}^{+}, 9.5 \%\right), 415$ (1.1), 373 (54), 315 (11), 259 (48), 147 (78), 115 (31) and 73 (100).

(3S,4S)-3,4-Bis(tert-butyldimethylsiloxy)undec-1-en-6-yne (-)-21g

According to the procedure described for the aforementioned preparation (10a $\rightarrow \mathbf{1 0 e}$), , itle compound $(-)-\mathbf{2 1 g}(436 \mathrm{mg}, 96 \%)$ was obtained from diol 21c ($200 \mathrm{mg}, 1.10 \mathrm{mmol}$) as an oil (Found: C, 67.1; H, 11.3. $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{2}$ requires $\mathrm{C}, 67.3 ; \mathrm{H}$, 11.3%); $[a]_{\mathrm{D}}^{18}-65.7$ (c $0.51, \mathrm{CHCl}_{3}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1645(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}} 5.93(1 \mathrm{H}$, ddd, $J 17.6,10.7$ and $4.4,2-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{d}, J 17.6$ $1-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{d}, J 10.7,1-\mathrm{H}), 4.18(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.72(1 \mathrm{H}$, ddd, J 8.8, 4.4 and $3.9,4-\mathrm{H}), 2.43(1 \mathrm{H}$, ddt, $J 17.1,3.9$ and 2.4 ,
$5-\mathrm{H}), 2.13\left(2 \mathrm{H}, \mathrm{ddt}, J 7.3,6.8\right.$ and $\left.2.4,8-\mathrm{H}_{2}\right), 2.06(1 \mathrm{H}$, ddt, $J 17.1,8.8$ and $2.4,5-\mathrm{H}), 1.50-1.35\left(4 \mathrm{H}, \mathrm{m}, 9-\mathrm{and} 10-\mathrm{H}_{2}\right), 0.90$ $\left(21 \mathrm{H}, \mathrm{m},{ }^{ } \mathrm{Bu} \times 2\right.$ and Me$), 0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 136.8,115.1,81.0$, $78.5,75.0,74.8,31.1,25.8,22.0,21.9,18.6,18.2,18.1,13.6$, $-4.5,-4.7,-4.8$ and $-5.0 ; m / z 410\left(\mathrm{M}^{+}, 6.2 \%\right), 395(1.6), 353$ (63), 315 (16), 239 (64), 147 (97), 115 (16) and 73 (100).

(3S,4S)-3,4-Bis(tert-butyldimethylsiloxy)-7-(trimethylsilyl)hept-1-en-6-yne (-)-21h

According to the procedure described for the aforementioned preparation ($\mathbf{1 0 a} \rightarrow \mathbf{1 0 e}$), title compound $(-)-\mathbf{2 1 h}(101 \mathrm{mg}, 94 \%)$ was obtained from diol 21d ($50.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) as an oil (Found: M^{+}, 426.2830. $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{3}$ requires M, 426.2805); $[a]_{\mathrm{D}}^{18}-75.7\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 2160(\mathrm{C}=\mathrm{C})$ and 1645 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.92(1 \mathrm{H}$, ddd, $J 17.1,10.3$ and $4.4,2-\mathrm{H}), 5.25(1 \mathrm{H}$, d, $J 17.1,1-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{d}, J 10.3,1-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $3.77(1 \mathrm{H}, \mathrm{ddd}, J 8.8,4.4$ and $3.4,4-\mathrm{H}), 2.51(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $3.4,5-\mathrm{H}), 2.14(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $8.8,5-\mathrm{H}), 0.91(18 \mathrm{H}, \mathrm{s}$, $\left.{ }^{t} \mathrm{Bu} \times 2\right), 0.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.14(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 136.4,115.4,106.2$, 85.2, 74.6, 74.5, 25.8, 23.0, 18.2, 18.1, 0.09, -4.3, -4.6, -4.8 and $-4.9 ; m / z 426\left(\mathrm{M}^{+}, 0.4 \%\right), 411$ (1.4), 369 (44), 315 (9.4), 255 (38), 199 (13), 147 (76), 115 (14) and 73 (100).

(3S,4S)-3,4-Diacetoxyhept-1-en-6-yne (-)-21i

According to the procedure described for the preparation of diacetate 10i from diol 10a, title compound (-)-21i (166 mg , 100%) was obtained from diol 21a ($100 \mathrm{mg}, 0.79 \mathrm{mmol}$) as a pale yellow oil (Found: C, 63.0; H, 6.8. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$ requires C, $62.9 ; \mathrm{H}, 6.7 \%) ;[a]_{\mathrm{D}}^{21}-17.1\left(c 0.52, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3340$ $(\mathrm{C} \equiv \mathrm{C}-\mathrm{H}), 1740(\mathrm{CO})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.73(1 \mathrm{H}$, ddd, $J 17.1$, 10.3 and $6.4,2-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.36(1 \mathrm{H}, \mathrm{d}, J 17.1$, $1-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{d}, J 10.3,1-\mathrm{H}), 5.10(1 \mathrm{H}, \mathrm{q}, J 5.9,4-\mathrm{H}), 2.52$ $(1 \mathrm{H}$, ddd, J 17.1, 5.9 and $2.4,5-\mathrm{H}), 2.45(1 \mathrm{H}$, ddd, $J 17.1,6.4$ and $2.4,5-\mathrm{H}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and $2.01(1 \mathrm{H}$, $\mathrm{t}, J 2.4,7-\mathrm{H}) ; \delta_{\mathrm{C}} 170.0,169.6,131.9,119.5,78.4,73.6,71.2,70.9$, 20.8, 20.7 and 20.7; CI mass $m / z 211\left(\mathrm{M}^{+}+1,20 \%\right)$, 169 (1.4), 151 (100), 129 (1.0) and 109 (3.7).

(3S,4S)-3,4-Diacetoxy-7-phenylhept-1-en-6-yne (+)-21j

According to the procedure described for the aforementioned preparation ($\mathbf{1 0 a} \rightarrow \mathbf{1 0 i}$), title compound $(+)-\mathbf{2 1 j}(283 \mathrm{mg}, 100 \%)$ was obtained from diol 21b ($200 \mathrm{mg}, 0.99 \mathrm{mmol}$) as a pale yellow oil (Found: C, 71.6; H, 6.3. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, 71.3; $\mathrm{H}, 6.3 \%) ;[a]_{\mathrm{D}}^{24}+12.8\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1740(\mathrm{CO})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 7.42-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.31-7.25(3 \mathrm{H}, \mathrm{m}$, ArH), $5.80(1 \mathrm{H}$, ddd, $J 17.6,10.7$ and $6.3,2-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}, J 17.6,1-\mathrm{H}), 5.32$ ($1 \mathrm{H}, \mathrm{d}, J 10.7,1-\mathrm{H}$), 5.21 $(1 \mathrm{H}, \mathrm{td}, J 6.3$ and $5.9,4-\mathrm{H}), 2.76(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $5.9,5-\mathrm{H})$, $2.71(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $6.3,5-\mathrm{H}), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and 2.10 $(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}) ; \delta_{\mathrm{c}} 170.0,169.6,132.0,131.5,128.1,127.9,123.0$, $119.2,83.9,82.8,73.7,71.5,21.6,20.8$ and $20.7 ; \mathrm{m} / \mathrm{z} 286\left(\mathrm{M}^{+}\right.$, $8.5 \%), 211$ (6.1), 184 (80), 165 (25), 115 (32) and 43 (100).

(3S,4S)-3,4-Diacetoxyundec-1-en-6-yne (-)-21k

According to the procedure described for the aforementioned preparation ($\mathbf{1 0 a} \rightarrow \mathbf{1 0 i}$), title compound $(-)-\mathbf{2 1 k}(289 \mathrm{mg}, 99 \%)$, was obtained from diol 21c ($200 \mathrm{mg}, 1.10 \mathrm{mmol}$) as a pale yellow oil (Found: C, 67.6 ; $\mathrm{H}, 8.2 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.7 ; \mathrm{H}$, $8.3 \%) ;[a]_{\mathrm{D}}^{19}-4.9\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1740(\mathrm{CO})$ and 1645 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.74(1 \mathrm{H}$, ddd, $J 17.1,10.8$ and $6.4,2-\mathrm{H}), 5.51(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 5.33(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{d}, J 10.8,1-\mathrm{H})$, $5.05(1 \mathrm{H}, \mathrm{td}, J 6.4$ and $5.4,4-\mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{ddt}, J 16.6,6.4$ and $2.4,5-\mathrm{H}), 2.41(1 \mathrm{H}, \mathrm{ddt}, J 16.6,6.4$ and $2.4,5-\mathrm{H}), 2.11(2 \mathrm{H}$, ddt, $J 7.3,6.3$ and $\left.2.4,8-\mathrm{H}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $1.47-1.31\left(4 \mathrm{H}, \mathrm{m}, 9-\right.$ and $\left.10-\mathrm{H}_{2}\right)$ and $0.88(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me})$; $\delta_{\mathrm{C}} 170.0,169.7,132.2,119.0,83.0,73.9,73.8,72.0,30.8,21.8$, 21.0, 20.9, 20.8, 18.3 and 13.5; CI mass $m / z 267\left(\mathrm{M}^{+}+1,16 \%\right)$, 207 (100), 165 (7.2), 147 (4.1) and 105 (1.3).
(3S,4S)-3,4-Diacetoxy-7-(trimethylsilyl)hept-1-en-6-yne (-)-211 According to the procedure described for the aforementioned preparation ($\mathbf{1 0 a} \rightarrow \mathbf{1 0 i}$), title compound (-)-211 ($199 \mathrm{mg}, 93 \%$) was obtained from diol 21d ($150 \mathrm{mg}, 0.76 \mathrm{mmol}$) as a pale yellow oil (Found: C, 59.5; H, 7.8. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ Si requires C , 59.5; $\mathrm{H}, 7.9 \%$); $[a]_{\mathrm{D}}^{27}-13.1$ (c $\left.0.49, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2160(\mathrm{C} \equiv \mathrm{C})$, $1740(\mathrm{CO})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.74(1 \mathrm{H}$, ddd, $J 17.1,10.8$ and $6.4,2-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{d}, J 17.1,1-\mathrm{H}), 5.27$ $(1 \mathrm{H}, \mathrm{d}, J 10.8,1-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{td}, J 6.3$ and $5.9,4-\mathrm{H}), 2.53$ $(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $5.9,5-\mathrm{H}), 2.49(1 \mathrm{H}$, dd, $J 17.1$ and 6.3 , $5-\mathrm{H}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and $0.12(9 \mathrm{H}, \mathrm{s}, \mathrm{TMS}) ;$ $\delta_{\mathrm{C}} 169.9,169.6,132.0,119.2,100.8,87.6,73.8,71.4,22.1,20.9$, 20.7 and $-0.2 ; m / z 282\left(\mathrm{M}^{+}, 1.0 \%\right), 267$ (3.4), 222 (11), 207 (16), 180 (44), 165 (24) and 117 (100).

General procedure for the Pauson-Khand reaction of enynes 21

According to the procedure described for the Pauson-Khand reaction of enynes $\mathbf{1 0}$, enynes $\mathbf{2 1}$ were exposed to two conditions (Conditions A and B). Chemical yields and product ratios between the stereoisomeric products $\mathbf{2 2}$ and $\mathbf{2 3}$ are summarised in Table 2.

(5R,6S,7S)- and (5S,6S,7S)-6,7-Diacetoxy-2-phenylbicyclo-[3.3.0]oct-1-en-3-one 22j and 23j

A mixture of diacetates $\mathbf{2 2} \mathbf{j}$ and $\mathbf{2 3 j}$ (82:18) was obtained from diol 21b after acetylation (entry 2) as an oil (FAB mass: Found: $\mathrm{M}^{+}+1,315.1268 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5}$ requires $\mathrm{m} / \mathrm{z}, 315.1235$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1740(\mathrm{CO}), 1710(\mathrm{CO})$ and $1660(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}} 7.60$ $(18 / 100 \times 2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.52(82 / 100 \times 2 \mathrm{H}, \mathrm{d}, J 7.3$, ArH), 7.44-7.31 (3 H, m, ArH), 5.51 ($82 / 100$ H, ddd, J 10.3. 6.4 and $5.4,7-\mathrm{H}), 5.30(18 / 100 \mathrm{H}, \mathrm{d}, J 4.9,7-\mathrm{H}), 5.27(18 / 100 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 4.93(82 / 100 \mathrm{H}$, dd, $J 10.1$ and $6.4,6-\mathrm{H}), 3.47$ ($18 / 100$ $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.15(82 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.03$ $(82 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and $2.02(18 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$; FAB mass $m / z 315\left(\mathrm{M}^{+}+1,15 \%\right)$, $255(65), 195$ (100), 149 (69) and 136 (61).

(5R,6S,7S)- and (5S,6S,7S)-6,7-Diacetoxy-2-butylbicyclo-[3.3.0]oct-1-en-3-one 22k and 23k

A mixture of diacetates 22k and 23k (67:33) was obtained from diol 21c after acetylation (entry 3) as a pale yellow oil (Found: M^{+}, 294.1478. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}$ requires M, 294.1468); $v_{\text {max }} / \mathrm{cm}^{-1} 1740$ $(\mathrm{CO}), 1710(\mathrm{CO})$ and $1670(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}} 5.42$ ($67 / 100 \mathrm{H}$, ddd, J 10.3, 6.4 and $5.4,7-\mathrm{H}$), $5.24-5.19$ (33/100 $\times 2$ $\mathrm{H}, \mathrm{m}, 6-\mathrm{and} 7-\mathrm{H}), 4.84(67 / 100 \mathrm{H}, \mathrm{dd}, J 10.3$ and $6.4,6-\mathrm{H}), 2.09$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.06(67 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.98(33 / 100 \times 3 \mathrm{H}$, $\mathrm{s}, \mathrm{Ac}), 0.88(67 / 100 \times 3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me})$ and $0.87(33 / 100 \times 3 \mathrm{H}$, $\mathrm{t}, J 7.3, \mathrm{Me}) ; m / z 294\left(\mathrm{M}^{+}, 1.6 \%\right), 252(8.8), 234$ (15), 192 (36), 174 (100), 149 (35) and 132 (85).
(5R,6S,7S)- and (5S,6S,7S)-6,7-Diacetoxy-2-(trimethylsilyl)-bicyclo[3.3.0]oct-1-en-3-one 221 and 231
A mixture of diacetates 221 and 231 (93:7) was obtained from diol 21d after acetylation (entry 5) as a pale yellow oil (Found: $\mathrm{C}, 58.1 ; \mathrm{H}, 7.3 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Si}$ requires C, $58.0 ; \mathrm{H}, 7.1 \%$); $v_{\max } / \mathrm{cm}^{-1}$ $1740(\mathrm{CO}), 1690(\mathrm{CO})$ and $1620(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}} 5.42$ $(93 / 100 \mathrm{H}$, ddd, $J 10.3,6.8$ and $5.9,7-\mathrm{H}), 5.26-5.20(7 / 100 \times 2$ $\mathrm{H}, 6-$ and $7-\mathrm{H}), 4.89(93 / 100 \mathrm{H}, \mathrm{dd}, J 10.3$ and $6.8,6-\mathrm{H}), 3.34$ $(7 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.04(93 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$, $2.07(93 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.02(7 / 100 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 0.20$ $(7 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{TMS})$ and $0.18(93 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{TMS})$; selected data for $\delta_{\mathrm{C}} 212.0,185.4,170.6,170.5,139.6,80.2,77.3,50.5$, 41.6, 34.4, 20.9, 20.9 and $-1.4 ; m / z 310\left(\mathrm{M}^{+}, 0.3 \%\right)$, 295 (3.1), 250 (29), 207 (13), 190 (100), 175 (67) and 147 (14).
(5R,6S,7S)-6,7-Bis(tert-butyldimethylsiloxy)bicyclo[3.3.0]oct-1-en-3-one (+)-22e
Compound $(+)$-22e was obtained as a pale yellow oil (Found: $\mathrm{C}, 62.6 ; \mathrm{H}, 10.3 . \mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{C}, 62.8 ; \mathrm{H}, 10.0 \%$); $[a]_{\mathrm{D}}^{17}+190.1\left(c 0.51, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1705(\mathrm{CO})$ and 1635
$(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.88(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{dt}, J 9.8$ and $5.9,7-\mathrm{H})$, $3.61(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and $5.9,6-\mathrm{H}), 3.12(1 \mathrm{H}, \mathrm{br}$ dd, $J 19.1$ and $9.8,8-\mathrm{H}), 2.94(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.57(1 \mathrm{H}, \mathrm{dd}, J 18.2$ and 6.4 , $4-\mathrm{H}), 2.41(1 \mathrm{H}$, br dd, $J 19.1$ and $5.9,8-\mathrm{H}), 2.21(1 \mathrm{H}, \mathrm{dd}, J 18.2$ and $3.4,4-\mathrm{H}), 0.90\left(18 \mathrm{H}, \mathrm{s},{ }^{'} \mathrm{Bu} \times 2\right), 0.09(9 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3)$ and 0.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $\delta_{\mathrm{C}} 209.1,182.9,126.7,84.2,79.7,51.2,41.1$, $36.0,25.8,17.9,-4.2,-4.6$ and $-4.6 ; m / z 382\left(\mathrm{M}^{+}, 0.7 \%\right), 367$ (1.6), 325 (60), 297 (10), 250 (5.4), 193 (44), 147 (100) and 119 (13).
(5S,6S,7S)-6,7-Bis(tert-butyldimethylsiloxy)bicyclo[3.3.0]oct-1-en-3-one (-)-23e
Compound $(-)-23 \mathrm{e}$ was obtained as a pale yellow oil (Found: C, $62.5 ; \mathrm{H}, 10.1 \%) ;[a]_{\mathrm{D}}^{17}-139.8\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1700$ (CO) and $1635(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 5.91(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{d}, J 4.9$, $7-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{d}, J 3.9,6-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.90(1 \mathrm{H}$, ddd, J 19.0, 4.9 and $1.0,8-\mathrm{H}), 2.44(1 \mathrm{H}$, br d, $J 19.0,8-\mathrm{H}), 2.40$ $(1 \mathrm{H}, \mathrm{ddd}, J 17.1,6.4$ and $1.0,4-\mathrm{H}), 2.30(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $3.9,4-\mathrm{H}), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.81\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; $\delta_{\mathrm{C}} 211.4,188.0,126.0,79.7,76.2,49.3,36.3,36.2,25.7,25.6$, 18.0, 17.9, -4.5, -4.7, -4.8 and -5.0; m/z $382\left(\mathrm{M}^{+}, 0.8 \%\right), 367$ (2.5), 325 (73), 297 (9.7), 250 (3.5), 193 (63), 147 (100) and 119 (17).

(5R,6S,7S)-6,7-Bis(tert-butyldimethylsiloxy)-2-phenylbicyclo-

 [3.3.0]oct-1-en-3-one (+)-22fCompound $(+)$-22f was obtained as a solid, mp $94-95^{\circ} \mathrm{C}$ (from hexane) (Found: C, 68.0; H, 9.3. $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires C , 68.1 ; $\mathrm{H}, 9.2 \%) ;[a]_{\mathrm{D}}^{22}+68.1\left(c 0.50, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1700(\mathrm{CO})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 7.54(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.40(2 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{ArH}), 7.31(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH})$, $4.41(1 \mathrm{H}, \mathrm{dt}, J 9.8$ and 6.4 , $7-\mathrm{H}), 3.65(1 \mathrm{H}$, dd, 9.8 and $6.4,6-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{br}$ dd, $J 18.1$ and $9.8,8-\mathrm{H}), 2.99(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.77(1 \mathrm{H}$, dd, $J 18.1$ and 6.4 , $4-\mathrm{H}), 2.51(1 \mathrm{H}$, ddd, J 18.1, 6.4 and $2.0,8-\mathrm{H}), 2.39(1 \mathrm{H}$, dd, $J 18.1$ and $3.4,4-\mathrm{H}), 0.92\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.88\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.11$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $0.10(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 2$) and 0.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$); $\delta_{\mathrm{C}} 206.8,176.2,136.3,131.1,128.4,128.2,128.0,84.0,79.7$, $49.0,41.8,36.8,25.8,17.9,17.9,-4.2,-4.5$ and $-4.6 ; ~ m / z 458$ $\left(\mathrm{M}^{+}, 0.1 \%\right), 443$ (1.8), 401 (80), 326 (19), 269 (44), 195 (67), 167 (25), 147 (100) and 133 (9.3).

(5S,6S,7S)-6,7-Bis(tert-butyldimethylsiloxy)-2-phenylbicyclo-[3.3.0]oct-1-en-3-one (-)-23f

Compound (- -23f was obtained as an oil (Found: C, 68.0; H, $9.4 \%)$; $[a]_{\mathrm{D}}^{24}-29.9\left(c 0.21, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1700(\mathrm{CO})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}} 7.56(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.39(2 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{ArH}), 7.30(1 \mathrm{H}, \mathrm{t}, J 7.3$, ArH), $4.24(1 \mathrm{H}, \mathrm{d}, J 4.9,7-\mathrm{H}), 3.94$ ($1 \mathrm{H}, \mathrm{d}, J 3.9,6-\mathrm{H}$), $3.39(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.00(1 \mathrm{H}$, br dd, $J 19.0$ and 4.9, 8-H), $2.67(1 \mathrm{H}$, br d, $J 19.0,8-\mathrm{H}), 2.59(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $6.3,4-\mathrm{H}), 2.48(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $3.4,4-\mathrm{H}), 0.92(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{t} \mathrm{Bu}\right), 0.78\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 0.13(6 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 2), 0.06(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}} 208.9,181.5,136.0,132.0,128.3$, 128.1, 127.6, 76.5, 75.9, 47.1, 37.2, 36.8, 25.8, 25.6, 17.9, -4.4, $-4.7,-4.7$ and $-4.9 ; m / z 458\left(\mathrm{M}^{+}, 0.6 \%\right), 443$ (4.4), 401 (100), 326 (21), 269 (33), 195 (74), 147 (96) and 133 (10).
($5 R, 6 S, 7 S$)- and ($5 S, 6 S, 7 S$)-2-Butyl-6,7-bis(tert-butyldimethyl-siloxy)bicyclo[3.3.0]oct-1-en-3-one 22g and 23g
A mixture of bicyclic enones 22g and 23g (70:30) was obtained from enyne 21g (entry 12) as a pale yellow oil (Found: M^{+}, 438.2963. $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $M, 438.2985$); $v_{\text {max }} / \mathrm{cm}^{-1} 1700$ (CO) and $1660(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}} 4.31(70 / 100 \mathrm{H}, \mathrm{dt}$, $J 9.8$ and $6.4,7-\mathrm{H}), 4.20(30 / 100 \mathrm{H}, \mathrm{d}, J 5.4,7-\mathrm{H}), 3.86(30 / 100$ $\mathrm{H}, \mathrm{d}, J 3.9,6-\mathrm{H}), 3.54(70 / 100 \mathrm{H}$, dd, $J 9.8$ and $6.4,6-\mathrm{H}), 3.20$ $(30 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.70(70 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 0.90(70 / 100 \times 9$ $\left.\mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{Bu}\right), 0.89\left(70 / 100 \times 9 \mathrm{H}, \mathrm{s},{ }^{〔} \mathrm{Bu}\right), 0.88\left(30 / 100 \times 9 \mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{Bu}\right)$
and $0.79\left(30 / 100 \times 9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right) ; ~ m / z 438\left(\mathrm{M}^{+}, 0.8 \%\right), 423(4.9)$, 381 (87), 353 (8.6), 325 (26), 306 (4.2), 249 (20), 175 (80), 147 (100) and 133 (24).
(5R,6S,7S)- and (5S,6S,7S)-6,7-Bis(tert-butyldimethylsiloxy)-2-(trimethylsilyl)bicyclo[3.3.0]oct-1-en-3-one 22h and 23h
A mixture of bicyclic enones 22h and 23h (70:30) was obtained from enyne 21h (entry 13) as a pale yellow oil (Found: C, 61.0; $\mathrm{H}, 10.3 . \mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{3}$ requires $\left.\mathrm{C}, 60.7 ; \mathrm{H}, 10.2 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1690(\mathrm{CO})$ and $1610(\mathrm{C}=\mathrm{C})$; selected data for $\delta_{\mathrm{H}} 4.30(70 / 100 \mathrm{H}$, $\mathrm{dt}, J 9.8$ and $6.4,7-\mathrm{H}), 4.19(30 / 100 \mathrm{H}, \mathrm{d}, J 5.4,7-\mathrm{H}), 3.86$ $(30 / 100 \mathrm{H}, \mathrm{d}, J 3.4,6-\mathrm{H}), 3.58(70 / 100 \mathrm{H}$, dd, $J 9.8$ and 6.4 , $6-\mathrm{H}), 3.28$ ($30 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.88 ($70 / 100 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 0.90 $\left(9 \mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{Bu}\right), 0.89\left(70 / 100 \times 9 \mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{Bu}\right), 0.79(30 / 100 \times 9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{t} \mathrm{Bu}\right), 0.18(70 / 100 \times 9 \mathrm{H}, \mathrm{s}, \mathrm{TMS})$ and $0.17(30 / 100 \times 9 \mathrm{H}, \mathrm{s}$, TMS); $m / z 454$ ($\mathrm{M}^{+}, 1.2 \%$), 439 (13), 423 (0.5), 398 (100), 323 (5.2), 265 (17), 191 (24), 147 (93) and 119 (15).

References

1 B. M. Fraga, Nat. Prod. Chem., 1992, 9, 217, and references cited therein.
2 (a) L. A. Paquette, Stud. Nat. Prod. Chem., 1993, 13, 3; (b) A. K. Gupta, X. Fu, J. P. Synder and J. M. Cook, Tetrahedron, 1991, 47, 3665; (c) T. Hudlicky, Stud. Nat. Prod. Chem., 1989, 3, 3; (d) L. A. Paquette and A. M. Doherty, Polyquinane Chemistry, Syntheses and Reactions, Springer-Verlag, Berlin, 1987; (e) T. Hudlicky, G. Sinai-Zingde, M. G. Natchus, B. C. Ranu and P. Papadopolous, Tetrahedron, 1987, 43, 5685; (f) B. M. Trost, Angew. Chem., Int. Ed. Engl., 1986, 25, 1; (g) M. Vandewalle and P. D. Clercq, Tetrahedron, 1985, 41, 1767; (h) L. A. Paquette, Top. Curr. Chem., 1984, 119, 1.
3 N. E. Schore, in (a) Comprehensive Organometallic Chemistry II, ed. E. W. Abel, F. G. Stone and G. Wilkinson, Elsevier, New York, 1995, vol. 12, p. 703; (b) Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A. Paquette, Pergamon, Oxford, 1991, vol. 5. p. 1037; (c) Org. React., 1991, 40, 1; (d) Chem. Rev., 1988, 88, 1081; (e) P. L. Pauson, in Organometallics in Organic Synthesis. Aspects of a Modern Interdisciplinary Field, ed. A. de Meijere and H. tom Dieck, Springer, Berlin, 1988, p. 233.
4 C. Mukai and M. Hanaoka, Synlett, 1996, 11, and references cited therein.
5 A part of this work was published in a preliminary communication: C. Mukai, M. Uchiyama, S. Sakamoto and M. Hanaoka, Tetrahedron Lett., 1995, 36, 5761.
6 H. Iida, N. Yamazaki and C. Kibayashi, J. Org. Chem., 1987, 52, 3337.
7 H. Kotsuki, I. Kadota and M. Ochi, J. Org. Chem., 1990, 55, 4417.
8 H. Kotsuki, I. Kadota and M. Ochi, Tetrahedron Lett., 1990, 31, 4609.

9 E. Abushanab, P. Vemishetti, R. W. Leiby, H. K. Singh, A. B. Mikkilineni, D. C.-J. Wu, R. Saibaba and R. P. Panzica, J. Org. Chem., 1988, 53, 2598.

10 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3767.
11 (a) T. R. Hoye and J. A. Suriano, J. Org. Chem., 1993, 58, 1659; (b) Y. K. Chung, B. Y. Lee, N. Jeong, M. Hudecek and P. L. Pauson, Organometallics, 1993, 12, 220.
12 (a) N. Jeong, Y. K. Chung, B. Y. Lee, S. H. Lee and S.-E. Yoo, Synlett, 1991, 204; (b) S. Shambayati, W. E. Crowe and S. L. Schreiber, Tetrahedron Lett., 1990, 31, 5289.

13 (a) P. Magnus and L. M. Principe, Tetrahedron Lett., 1985, 26, 4851; (b) P. Magnus, C. Exon and P. Albaugh-Robertson, Tetrahedron, 1985, 41, 5861.
14 (a) P. Magnus, M. J. Slater and L. M. Principe, J. Org. Chem., 1989, 54, 5148; (b) P. Magnus and D. P. Becker, J. Am. Chem. Soc., 1987, 109, 7495; (c) P. Magnus, L. M. Principe and M. J. Slater, J. Org. Chem., 1987, 52, 1483; (d) C. Exon and P. Magnus, J. Am. Chem. Soc., 1983, 105, 2477.
15 J. Mulzer, K.-D. Graske and B. Kirste, Liebigs Ann. Chem., 1988, 891.

Paper 8/03072C
Received 24th April 1998 Accepted 4th June 1998

